Multi-Agent Path Finding with Priority for Cooperative Automated Valet Parking

Ayano Okoso'*, Keisuke Otaki!, Tomoki Nishi'
! Toyota Central R&D Labs., Inc.
{okoso, otaki, nishi} @mosk.tytlabs.co.jp

Abstract

Shortage of parking lots has been a serious problem
due to the rapid population growth in urban areas.
Cooperative Automated Valet Parking (Co-AVP) is
a promising approach to mitigate the problem. Co-
AVP system would realize high density and efficient
parking by automatically navigating vehicles to va-
cant parking spaces. Cooperative path planning has
been extensively studied as Multi-Agent Path Find-
ing (MAPF). In Co-AVP, vehicles would be often
prioritized. For instance, vehicles would be able
to spend more time to park in vacant spaces than
moving from parking spaces to waiting drivers. Pre-
vious MAPF settings, however, cannot treat such
priorities. In this paper, we formulate MAPF con-
sidering each agent’s priority. We also develop the
optimal method based on Conflict-Based Search
(named CBS-Pri) and the heuristic method based on
Cooperative A* (named CA*-Pri). We verified that
higher prioritized vehicles tended to preferentially
arrive at waiting drivers by our methods in numeri-
cal experiments. We also found that CBS-Pri always
searched better solutions than or equal to CA*-Pri
but requires more computational time.

1 Introduction

Rapid population growth in urban areas is getting worse to so-
cial problems related to transportation (e.g., traffic congestion,
air pollution, and loss of public space) [Rodrigue et al., 2016].
Shortage of parking lots is one of the problems. Drivers often
spend much time to find vacant parking spaces in crowded
areas. Automated Valet Parking (AVP) [Banzhaf er al., 2017],
where vehicles automatically find vacant spaces and park, is a
promising approach to address the problem in various studied
approaches such as the smart parking system [Shaheen, 2005].
It will enable to reduce drivers’ travel time and park with high
density because the space where drivers get off and walk is
unnecessary. Previous work reported that AVP realized to
reduce necessary parking spaces by up to 50% [Banzhaf et
al., 2017].

*Contact Author

Figure 1: Overview of Cooperative Automated Valet Parking

Cooperative Automated Valet Parking (Co-AVP), where
multiple vehicles move and park simultaneously, would help
to reduce waiting time to arrive at drivers from parking spaces.
Figure 1 shows an instance of Co-AVP; (a) a vehicle moves to
a suitable parking space after its driver get off, (b) a vehicle
travels at its waiting driver from a parking space, and (c) a
vehicle relocates to a more suitable space. Previous AVP
studies for path planning has been focused on the generation
of trajectories of a single vehicle to a parking space under
kinematic constraints [Conner et al., 2007; Song, 2013]. In
our best knowledge, however, no cooperative path planning
among vehicles has been studied to realize Co-AVP.

Cooperative path planning is well studied as Multi-Agent
Path Finding (MAPF) (see, e.g., [Standley, 2010; Yu and
LaValle, 2013al). The purpose of MAPF is to find collision-
free paths for agents (e.g., robots or vehicles) to reach their
destinations (called “task’) with minimum cost such as travel
time or distance. Most conventional settings in MAPF assume
that all tasks are unprioritized. In Co-AVP, however, prioriti-
zation of tasks is often natural. For instance, vehicles have to
arrive at their drivers as soon as possible to save the drivers’
time when they travel somewhere, but could spend more time
to park after drivers get off. In some cases, it might be desir-
able that upper grade members receive their vehicles earlier
than others as a member bonus.

In this paper, we propose MAPF with task priorities, named
MAPF with Priority, and develop two solvers. The first solver,
named CBS-Pri, finds optimal paths of agents to reach their
destinations based on Conflict-Based Search (CBS) [Sharon et

al., 2015]. Whereas the second solver, named CA*-Pri, finds
paths using a heuristics based on Cooperative A* (CA*) [Sil-
ver, 2005]. Both solvers have their pros and cons. For in-
stance, the CBS-Pri can always find the optimal paths if given
instances are solvable but needs more computational time than
CA*-Pri. On the other hand, CA*-Pri can find paths faster
than CBS-Pri but the optimality of the paths is not guaranteed.

The main contributions of this paper are as follows: (1)
As far as we know, we are the first to apply MAPF to the
Co-AVP problem. (2) We formulate MAPF for prioritized
tasks, named MAPF-Pri. (3) We propose two solvers: an
optimal (CBS-Pri) and heuristics (CA*-Pri) solvers. (4) We
evaluated the methods proposed in this paper using synthetic
grid graphs simulated Co-AVP environments. We verified that
higher prioritized vehicles tended to preferentially arrive at
waiting drivers by our methods in numerical experiments. We
also found that CBS-Pri yield better solutions than or equal to
CA*-Pri but required more computational time as the number
of agents increased.

The rest of this paper is organized as follows. Section 2
presents a description of related work, while Section 3 presents
preliminaries. Section 4 explains the formulation and proposed
methods for MAPF with Priority, while experimental results
are presented in Section 5. Section 6 draws a conclusion of
this paper.

2 Related Work

AVP has been studied from various points of view such as
sensors, mapping, localization, monitoring, motion planning,
and platforms [Loper et al., 2013; Gonzélez et al., 2016;
Chirca er al., 2015]. Research topics which have been ex-
plored extensively in this direction include technologies for
estimating the parking area or optimal trajectory to parking
positions [Al-Absi et al., 2010; Oentaryo and Pasquier, 2004;
Buehler and Wegener, 2003]. However, most of these re-
searches on path/route/trajectory planning focus on a single
vehicle and do not consider cooperative path planning for mul-
tiple vehicles. In this paper, we apply MAPF approaches to
cooperative path planning for AVP (Co-AVP).

Various extensions has been studied for MAPF to fit real-
world applications. Ma et al. propose a life-long setting as-
sumed logistics in a warehouse that pickup and delivery goods
repeatedly [Ma et al., 2017]. Besides this, some researchers
presented the setting in which specific agents can execute
specific tasks [Ma and Koenig, 2016], the setting whereby
adjacent agents can exchange packages that they carry as
tasks [Ma et al., 2016]. Ma et al. introduced a setting that
maximizes the number of agents that reach within the time
constraints [Ma e al., 2018]. However, in our best knowledge,
MAPEF to treat prioritized tasks has not been developed.

It is well-known that MAPF is NP-hard [Yu and LaValle,
2013b], moreover its various solvers have been studied exten-
sively [Felner et al., 2017]. These solvers can be classified as
optimal solvers [Sharon ef al., 2015; Surynek, 2012; Wagner
and Choset, 2011] or heuristics-based solvers [Silver, 2005;
Latombe, 2012]. Both types of solvers have pros and cons. For
instance, optimal solvers can always find the optimal paths but
comparatively need more computational time. On the other

hand, heuristics solvers can find paths faster than optimal
solvers but the optimality of the paths is not guaranteed. In
this paper, we propose optimal and heuristics solvers respec-
tively based on the methods: Conflict-Based Search [Sharon
et al., 2015] and Cooperative A* [Silver, 2005].

3 Preliminaries

First, we introduce a formulation of Multi-Agent Path Finding
(MAPF). Let G(V, E) be a simple graph with the set V' of
vertices and the set E C V' x V of edges, where (u,v) corre-
sponds to the move fromu € Vtov € V. A= {a1,...,an}
denotes a set of m agents. Each agent a; has a given unique
task 7; == (s;,9:) € T to travel from the origin s; € V to the
destination g; € V, where T is the set of tasks. An agent can
either move to an adjacent vertex or wait at its current vertex
at each time step ¢ € {1,2,...,00}. The cost of each action
is one. Let T; be a travel time of a; until the agent arrives
at its destination g;. A path 7; of the agent a; is defined as
a sequence of vertices 7; 1= (v, vh,..., v}, v{ q,..., V)
satisfying v} = s; and v}, = g;, where v} is the vertex that a;
visits at time ¢. The set 7w := {m1, ..., 7} consists of paths
for all agents.

A solution of a MAPF instance is a set of valid paths of all
agents. A path is valid if its path has no collisions. A collision
between a, and a; is either a vertex collision (4, j, v, t) (two
agents a; and a; can never occupy the same vertex v at the

same time step t), that is v = y,f = vg , or an edge collision

(i, j, v1,v2,t) (two agents a; and a; can never switch positions
with the same edge (v, v2) from time step ¢ to ¢ 4 1), that is
vy =0} =], and vy = vf | =17.

The objective of MAPF is to find a set of valid paths 7*
with minimum total travel cost as follows:

T :argminZTi. (D
T A

4 MAPF with Priority

4.1 Formulation

In this section, we introduce a formulation of MAPF with
Priority (MAPF-Pri). Let p := {p1,...,pm} be the set of
priorities, where p; € R, is a priority of a;. p; > p; means
that a; has the higher priority task than a;.

The objective of MAPF-Pri is to find the set 7v* with mini-
mum total cost as follows:

7 = arg min Zpi -T;. 2)
T icA
The valid paths computed by solvers would reflect each agent
priority because each agent travel cost is weighted by its prior-
ity. MAPF-Pri is obviously NP-hard because MAPF, which is
a particular case of MAPF-Pri, is NP-hard [Yu and LaValle,
2013b].

4.2 Conflict-Based Search for MAPF with Priority

In this subsection, we present Conflict-Based Search for
MAPF with Priority (CBS-Pri) as an optimal solver. CBS
is a well-known solver guaranteed to return optimal paths in

e m—— e —m e ——————

Constraints: {}
. fa1:51,A,B,D
Solut|on.{a2:52‘A’ B.D

cost: 12 {al: 3
a:9

/

Constraints: {(ay, A, 1)}

Constraints: {(ay, A, 1)}

. {ay:81,51,A,B,D . { a;:5,A,B,D
Solutlon.{ ay: 5y A, B,D Solution: (i 52,55, A, B, D
: a:4 . a;:
cost: 13 [a2:9 cost: 15 {az:lz
Solution

Figure 2: (i) Co-AVP example. (ii) Graph structure of Co-AVP
example. (iii) Constraint tree.

problems with valid solutions. In order to accomplish this,
CBS adds a set of constraints for each agent and finds paths
satisfying the constraints. If there are collisions among these
paths, CBS adds a new constraint and resolve the collisions
one at a time. While CBS performs a best-first search with
the travel cost, CBS-Pri, on the other hand, employs the travel
cost weighted based on priority.

The search process of CBS-Pri, like CBS, consists of two
hierarchies: the low-level search and the high-level search.
In the low-level search, CBS-Pri updates the agent’s paths
satisfying the constraints imposed by the high-level search.
Whereas, in the high-level search, CBS-Pri validates if paths
by the low-level search have collisions and if so, CBS-Pri adds
a new constraint to resolve the collisions. CBS-Pri stores the
set of constraints on a constraint-tree (CT). We can straightfor-
wardly prove that CBS-Pri always returns an optimal solution
when the instance has valid solutions by following the proofs
of the original CBS (see [Sharon er al., 2015]). We describe
the processes in detail using the example illustrated in Fig. 2
as below.

Example

Figure 2 (i) and (ii) respectively show a simple example of
Co-AVP. In Fig. 2, the problem instance illustrated in diagram
(i) can be interpreted by a graph structure as in diagram (ii).
The blue and red vehicles are agents a1 and aq, respectively;
besides, the red vehicle has higher priority (p; = 1,p2 = 3).
Both vehicles travel to the same goal vertex (g3 = g2 = D)
from each start vertex (s; and s2). The cost of moving and
waiting at one timestep is set as one.

In the high-level search, CBS-Pri searches a constraint tree
(CT) as shown in Fig. 2 (iii). Each node N in the CT contains
the following data: (1) A set of constraints (N.constraints),
(2) a solution (N.solution), and (3) the total cost (/N.cost)
of the current solution (IN.solution). At the root node of

Algorithm 1 the high-level search of CBS-Pri

Input: MAPF-Pri instance: G, A, 7, p
Output: 7*

1: R.constraints < ()
2: R.solution +low-level(Va; € A)
3: R.cost <— COST(R.solution)
4: OPEN « ()
5: insert R to OPEN
6: while OPEN not empty do
7 P « pop the node with the lowest cost from OPEN
8 for each time step ¢t € max(T;) do
9: if collision(a;, a;, v, t) exists then
10: C + (a;,a;,v,1t)
11: for each agent a; included in C' do
12: A + new node
13: A.constraints < P.constraintsU (a;,v,t)
14: A.solution < P.solution
15: Update A.solution by low-level(a;)
16: A.cost < COST(A.solution)
17: Insert A to OPEN
18: else
19: 7 < P.solution
20: return 7w*

the CT, N.constraints is the empty set. N.solution has the
set of paths for all agents by the low-level search. Further-
more, the path 7; for agent a; must satisfy the constraints
of a; in N.constraints. N.cost is calculated by Eq. (2). In
the example shown in Fig. 2, N.solution of the root node is
(s1, A, B, D) for ay and (s2, A, B, D) for as. N.cost of the
root node is 12 summed up each travel cost weighted by prior-
ity p;. This root node is then push in a priority queue (named
OPEN) and will be expanded next. The expanded node is
deleted from OPEN. N.solution is not a valid solution be-
cause the paths have collisions. Two child nodes are generated
to resolve it. CBS-Pri adds constraints (a1, A, 1) for the left
child node and (as, A, 1) for the right child node. Furthermore,
(a;,v,t) means “agent a; does not exist on node v at time ¢”.
In the left child node, the low-level search updates the path
for a; to avoid A at timestep one. The cost of the left child
node is now 13. In the right child node, similarly, N.solution
is generated with cost 15. The both child nodes are inserted
into OPEN. Finally, the left child node is expanded because
of the lowest cost in OPEN and validated if its solution has
collisions. Since no collisions exist, the solution of the left
child node is returned as an optimal solution.

The high-level search

Algorithm 1 shows the procedure of the high-level search. In
this algorithm, COST() denotes the function that calculates
the cost value by Eq. (2), and low-level (a;) represents the
low-level search for a;. At lines 1-5, CBS-Pri sets the root
node containing initial conditions and insert the node into
OPEN. At lines 6-20, CBS-Pri expands the node with the low-
est cost from OPEN and check if the solution is valid (line
9). If the solution has no collisions, CBS-Pri returns it as an
optimal solution (lines 19-20). On the other hand, if a collision
(@i, a;,v,t) or (a;, a;, e, t) occurs, CBS-Pri adds new nodes

Algorithm 2 CA*-Pri

Input: MAPF-Pri instance: G, A, T, p
Output: ©*
1: while True do
2: ORDER < sort(A, p)
3 initialize(A, reservation-table)
4: T 0
5: for each agent a; € ORDER do
6.
7
8

m; + A*(a;, reservation-table)
if ; exists then
reserve(r;, reservation-table)

9: ™ — U {m}
10: else

11: break

12: if |7*| = m then

13: return 7*

with new constraints (line 13) and updates the solution and the
cost by involving the low-level search (lines 14-16). For sim-
plicity purpose, we describe only node collisions (a;, a;,v,t)
in Algorithm 1. CBS-Pri inserts the node into OPEN (line 17)
and continues to expand the next node.

The low-level search

In the low-level search, CBS-Pri finds the optimal path for
agent a; that satisfy all constraints of a; by the high-level
search. In this paper, we use A* algorithm which searches on
the space-time map consisting of vertices and time.

4.3 Cooperative A* for MAPF with Priority

Here, we propose a heuristics solver for MAPF-Pri based
on Cooperative A* (CA*-Pri). CA* sequentially finds paths
of each agent randomly ordered. Each agent searches its
collision-free path on the graph by the space-time A* algo-
rithm using a reservation table. In the reservation table, each
agent writes its path: vertex v at timestep ¢ and/or edge e at
timestep from ¢ to ¢ + 1. When subsequent agents search
their paths, they avoid the vertices or edges that have already
written in the reservation table. CA*-Pri also searches the
path for a; by space-time A* algorithm using the reservation
table but sorts agents based on the priority instead of ordering
randomly.

Algorithm 2 shows the procedure. In the algorithm,
sort(A, p) represents the function to sort agents a; € A by pri-
ority p, while initialize(A, reservation-table) is the function
to reserve initial positions of all agents on the reservation table.
A*(ay, reservation-table) is the function to search the optimal
path for a; by space-time A* algorithm using the reservation-
table, whereas reserve(r;, reservation-table) is the function
that writes the path into the reservation-table. CA*-Pri repeats
searching and reserving until paths for all agents are calculated.
First, CA*-Pri sorts agents by priority and reserves initial posi-
tions of all agents (lines 2-3). At lines 4-11, CA*-Pri performs
path generation and reservation successively. Besides, CA*-
Pri searches the path for a; by space-time A* (line 6). If the
valid path of a; exists, CA*-Pri writes the path into the reserva-
tion table (lines 7-9). Otherwise, CA*-Pri randomly re-orders
the agents with the same priority as a; and repeats the path

blue vehicle
exit vertex

red vehicle
(target agent)

Figure 3: Example of Co-AVP environment. The red vehicle is the
target agent. All vehicles move to the exit.

the difference in the # of timesteps
from shrotest path

251 R —— CBS-Pri
. \ - CA*-Pri
o h
0151 \
n
[0}
E 10/
£
051
0.01 B
1 2 3 4 5 6 7
priority

Figure 4: Difference in the number of target agent’s travel timesteps
compared to the case of the shortest path.

generation. If the valid paths for all agents are computed,
CA*-Pri returns them as solutions (lines 12-13).

5 Experiments

We evaluated the methods proposed in this paper in synthetic
grid graphs simulated Co-AVP environments, named Co-AVP
instance. Furthermore, the evaluation of CBS-Pri and CA*-Pri
is based on the following aspects: (1) The value of priority, (2)
the number of agents, and (3) the number of priority variations.
We utilized a PC with an Intel Core i7-3770 CPU at 3.40GHz
with 32GB of memory and implemented our code by python.
We set a timeout of five minutes for each instance.

For the purpose of simplicity, we assumed in the exper-
iments that all tasks for vehicles are to arrive at exits pre-
assigned for each agent ((a) in Fig. 1). No vehicles moved to
vacant spaces and relocated other vacant spaces ((b) and (c) in
Fig. 1).

Also, all agents synchronously move to their adjacent ver-
tices or wait at their current vertices at each timestep. We
further assumed that agents disappeared immediately after
arriving at their destination vertices. Therefore, Co-AVP in-
stances in the experiments always had valid solutions even
when some agents shared the exits.

5.1 Experiment 1

We evaluated path length computed by CBS-Pri or CA*-Pri
when changing the priorities of the vehicles. We used the
simple setting as shown in Fig. 3. The number of agents was
six: a red vehicle and five blue vehicles. The black circles
show the vertices. All vehicles move on the vertices along the
edges of the graph to the common exit vertex. We changed the
priorities of the red vehicles from one to seven and the ones of

Table 1: Success rate and average computational time.

method | success rate | average computational time [sec.]
CBS-Pri 1.0 0.13
CA*-Pri 0.96 0.0012

3714 4

Fiild [HH]

exit vertex

parking area

red vehicle

blue vehicle

Figure 5: Example environment. The red vehicles move to pre-
assigned exits. The blue ones are parked.

the blue vehicles from one to five. We tested the path length
in all combinations of the priorities. That is, the number of the
tests were 21,875 (7 x 5°). Figure 4 shows the mean difference
of the red vehicle’s path length from its shortest path length
with respect to the priorities. The blue solid line and the orange
dashed line respectively represent CBS-Pri and CA*-Pri, and
the error bars denote the standard error. The results show that
the paths computed by our methods converged to the shortest
path.

We also evaluated computational time and success rates of
the proposed methods with respect to the red vehicle priori-
ties. The computational time represents the running time per
instance, and the success rate means the ratio of the number
of instances solved within timeout to the total number of in-
stances. Table 1 shows the mean of the computational time
and the success rates. The computational time of CA*-Pri
was 103 times shorter than CBS-Pri. CA*-Pri, however, could
not always return valid paths because the paths of the agents
with higher priority were precomputed and fixed. On the other
hand, the success rate of CBS-Pri was 1.0 because CBS-Pri
was theoretically guaranteed to return the valid paths in the
instances with feasible solutions if the timeout is long enough.

5.2 Experiment 2

We evaluated our methods in large Co-AVP environments
to validate their scalability. We used a 13 x 10 grid graph
as shown in Fig. 5. The number of the red and the blue
vehicles was 60. Each red vehicle, which is an agent, had
a task traveling to the randomly pre-assigned exit vertex of
the four corners. The blue vehicles had no task and stayed
in their initial positions as the parking vehicles. The number
of the agents was changed from 5 to 40 at intervals of five
vehicles. The priority of each agent was assigned an integer
value from one to five randomly. We tested for 1,500 times of
each condition.

success rate

1.0

0.8 1

0.6 4

rate

0.4 1

0.2

—— CBS-Pri

—&- CA*-Pri
0.01 E—

5 10 15 20 25 30 35 40
the # of agents

Figure 6: Ratio of agents that successfully reach their goals.

computational time

T 200+
% 150 —— CBS-Pri
z ~%- CA®Pri
S 100 1 _a
‘f'-"
50 1 il

5 10 15 20 25 30 35 40
the # of agents

Figure 7: Average computational time.

First, we evaluated the success rates and the computational
time of our methods for the number of the agents (Fig. 6 and
Fig. 7). The results showed that the success rate of CBS-Pri
more drastically decreased with increasing the number of the
agents compared to the one of CA*-Pri because the many
instances were terminated due to timeout. CA*-Pri had 70%
of success rate even when the number of agents was 40, but
CBS-Pri had almost 0% when the number of agents exceeded
20. The computational time of the both methods increased
for the number of the agents but the increase of CA*-Pri was
much more moderate than the one of CBS-Pri. That is, CA*-
Pri would be more scalable method than CBS-Pri.

Second, we compared CBS-Pri to CA*-Pri for the travel
cost computed by Eq. (2). Figure 8 illustrates the mean travel
cost per vehicle for the number of agents. The green dashed
and dots line represents the cost in the case that all agents
reach their destinations with the shortest paths. That is, the
cost is the lower bound, but the paths are not always valid.
CBS-Pri could obtain the better solutions than CA*-Pri but
the difference was just less than 10% of the travel cost. That
is, CA*-Pri could find near optimal solutions compared to the
optimal solutions returned CBS-Pri.

Finally, Fig. 9 shows the result of success rates when the
number of priority variations was changed. The success rate of
CBS-Pri is almost constant while that of CA*-Pri decreases as
the number of priority variations increases. CBS-Pri searches

the average amout of cost values

26
c
S 241
(=]
O 22 -
(]
o
‘J’) 204
S " —+— CBS-Pri
CA*-Pri
161 —t - shortest path
5 10 15 20 25 30 35 40
the # of agents
Figure 8: Average amount of cost values.
success rate
1.0
0.8
Y06 —F— CBS-Pri
c CA*-Pri

1 [1 1
SRR

1 2 3 a 5
the number of priority variations

Figure 9: Ratio of agents that successfully reach their goals.

all paths simultaneously, on the other hand, CA*-Pri searches
each path sequentially. In CA*-Pri, when all paths are not
valid, the order of searching is re-sorted within the same pri-
ority only. Therefore CA*-Pri could return no valid solutions
when the agents with lower priority needed to be prioritized
than the ones with higher priority. This would be why the
success rate of CA*-Pri decreased with increasing the number
of the priority variations.

6 Conclusion

We formalized MAPF with Priority and applied it to Co-AVP.
We proposed two methods: CBS-Pri and CA*-Pri. CBS-Pri is
a method based on Conflict-Based Search and it theoretically
guaranteed to always return the optimal solutions. On the
other hand, CA*-Pri is a heuristic search method based on Co-
operative A*. We evaluated our methods using synthetic grid
graphs simulated Co-AVP environments. We verified that the
high prioritized vehicles can preferentially reach the waiting
drivers by our methods. We also evaluated our methods for
computational time and the success rate. The results showed
that the both methods had pros and cons. CBS-Pri always
yield more efficient solutions than or equal to CA*-Pri when
returning paths but achieved much lower success rate due to
the computational time in the instances with larger number of
agents. Thus, CBS-Pri could be employed when the number
of agents is small enough but otherwise one has to resort to

CA*-Pri.

Our methods for MAPF-Pri is, indeed, promising for other
ITS applications such as logistics in a warehouse and traffic
management at junctions because we use no assumption for
Co-AVP to develop the methods. In the future, we plan the
following directions: (1) development of more scalable meth-
ods for the number of agents and the size of environment, (2)
development of algorithms to treat not only moving to exits
but also moving to vacant parking spaces or relocating more
suitable spaces, and (3) application to other domains such as
logistics.

References

[Al-Absi et al., 2010] Hamada RH Al-Absi, Justin Di-
nesh Daniel Devaraj, Patrick Sebastian, and Yap Vooi Voon.
Vision-based automated parking system. In ISSPA, pages
757-760. IEEE, 2010.

[Banzhaf er al., 2017] Holger Banzhaf, Dennis Nienhiiser,
Steffen Knoop, and J Marius Zollner. The future of parking:
A survey on automated valet parking with an outlook on
high density parking. In IV, pages 1827-1834. IEEE, 2017.

[Buehler and Wegener, 2003] Oliver Buehler and Joachim
Wegener. Evolutionary functional testing of an automated
parking system. In Proceedings of CCCT and ISAS, 2003.

[Chirca et al., 2015] Mihai Chirca, Roland Chapuis, and
Roland Lenain. Autonomous valet parking system archi-
tecture. In ITSC, pages 2619-2624. IEEE, 2015.

[Conner et al., 2007] David C Conner, Hadas Kress-Gazit,
Howie Choset, Alfred A Rizzi, and George J Pappas. Valet
parking without a valet. In IROS, pages 572-577. IEEE,
2007.

[Felner ef al., 2017] Ariel Felner, Roni Stern, E Shimony,
Eli Boyarski, M Goldenerg, Guni Sharon, NR Sturtevant,
Glenn Wagner, and Pavel Surynek. Search-based optimal
solvers for the multi-agent pathfinding problem: Summary
and challenges. In SoCS, 2017.

[Gonzélez et al., 2016] David Gonzélez, Joshué Pérez, Vi-
cente Milanés, and Fawzi Nashashibi. A review of mo-
tion planning techniques for automated vehicles. T-ITS,
17(4):1135-1145, 2016.

[Latombe, 2012] Jean-Claude Latombe. Robot motion plan-
ning, volume 124. Springer Science & Business Media,
2012.

[Loper et al., 2013] Christian Loper, Claas Brunken, George
Thomaidis, Stephan Lapoehn, Paulin Pekezou Fouopi, Hen-
ning Mosebach, and Frank Koster. Automated valet parking
as part of an integrated travel assistance. In ITSC, pages
2341-2348. IEEE, 2013.

[Ma and Koenig, 2016] Hang Ma and Sven Koenig. Optimal
target assignment and path finding for teams of agents. In
Proceedings of AAMAS, pages 1144—1152. International
Foundation for Autonomous Agents and Multiagent Sys-
tems, 2016.

[Ma et al., 2016] Hang Ma, Craig A Tovey, Guni Sharon,
TK Satish Kumar, and Sven Koenig. Multi-agent path

finding with payload transfers and the package-exchange
robot-routing problem. In AAAI pages 31663173, 2016.

[Ma et al., 2017] Hang Ma, Jiaoyang Li, TK Kumar, and
Sven Koenig. Lifelong multi-agent path finding for on-
line pickup and delivery tasks. In Proceedings of AAMAS,
pages 837-845. International Foundation for Autonomous
Agents and Multiagent Systems, 2017.

[Ma er al., 2018] Hang Ma, Glenn Wagner, Ariel Felner,
Jiaoyang Li, TK Kumar, and Sven Koenig. Multi-agent path
finding with deadlines. arXiv preprint arXiv:1806.04216,
2018.

[Oentaryo and Pasquier, 2004] Richard Jayadi Oentaryo and
Michel Pasquier. Self-trained automated parking system.
In ICARCV, volume 2, pages 1005-1010. IEEE, 2004.

[Rodrigue erf al., 2016] Jean-Paul Rodrigue, Claude Comtois,
and Brian Slack. The geography of transport systems. Rout-
ledge, 2016.

[Shaheen, 2005] Susan Shaheen. Smart parking management
field test: A bay area rapid transit (bart) district parking
demonstration. Institute of Transportation Studies, 2005.

[Sharon et al., 2015] Guni Sharon, Roni Stern, Ariel Felner,
and Nathan R Sturtevant. Conflict-based search for optimal
multi-agent pathfinding. Artificial Intelligence, 219:40-66,
2015.

[Silver, 2005] David Silver. Cooperative pathfinding. AIIDE,
1:117-122, 2005.

[Song, 2013] B Song. Cooperative lateral vehicle control
for autonomous valet parking. International Journal of
Automotive Technology, 14(4):633-640, 2013.

[Standley, 2010] Trevor Scott Standley. Finding optimal so-
lutions to cooperative pathfinding problems. 2010.

[Surynek, 2012] Pavel Surynek. Towards optimal cooperative
path planning in hard setups through satisfiability solving.
In PRICAI, pages 564-576. Springer, 2012.

[Wagner and Choset, 2011] Glenn Wagner and Howie
Choset. M*: A complete multirobot path planning
algorithm with performance bounds. In IROS, pages
3260-3267. IEEE, 2011.

[Yu and LaValle, 2013a] Jingjin Yu and Steven M LaValle.
Multi-agent path planning and network flow. pages 157—
173,2013.

[Yu and LaValle, 2013b] Jingjin Yu and Steven M LaValle.
Structure and intractability of optimal multi-robot path plan-
ning on graphs. In AAAI, 2013.

