
A Sufficient Condition for Learning Unbounded Unions of Languages
with Refinement Operators

Tomohiko Okayama, Ryo Yoshinaka, Keisuke Otaki and Akihiro Yamamoto
Graduate School of Informatics, Kyoto University

Yoshida Honmachi, Sakyo-ku, Kyoto, Japan 606-8501

Abstract
This paper presents a natural sufficient condition on
a class of languages under which all the unions of
any number of languages from the class are learnable
from positive examples (data) in the Gold-style. Learn-
ing unions of languages models information extraction
from mixed data from different sources. The Gold-style
learning has provided many fruitful results on learning
unions of bounded number of languages, while few pos-
itive results on learning unions of unbounded number
of languages has been known. In this research, we fo-
cus on a condition of the class of languages on which
refinement operators are defined. Refinement operators
are fundamental tools to transform a hypotheses, which
represents a language, into a set of hypotheses, which
represent a subsets of the language.

1 Introduction
In this research, we present a sufficient condition on a class
of languages under which all the unions of any number of
languages from the class are learnable from positive data.
Our central research subject is learnability of unions of lan-
guages in the Gold-style learning.

The Gold-style learning from positive data, called iden-
tification in the limit from positive data is popular in the
field of computational learning theory (Angluin, 1980; Gold,
1967). Based on the rough observation of learning natural
languages, Gold proposed a learning model called identifi-
cation in the limit from positive data :
– A learner receives a datum belonging to a target language

step by step, infinitely many times.
– A learner outputs a hypothesis each time receives a datum.

In this paper, we adopt the Gold-style learning for learn-
ing a class of unions of languages. Let X be an enumer-
able set of objects. A language is any subset of X . A lan-
guage mapping L maps a hypothesis h to a language, de-
noted by L(h). The set of hypotheses H is called hypoth-
esis space. The class of languages defined by H is C =
{ L(h) ⊆ X | h ∈ H }.

In the process of learning unions of languages in the Gold-
Style, a learner receives mixed data from different languages
and constructs a set of hypotheses representing a union of
languages. In the learning, the number of languages con-
sisting a union is often bounded. If the upper bound is k,

the class of up to k unions of languages Ck = {L(h1) ∪
· · · ∪L(hn)|∃n ∈ N+, n ≤ k} is called (k-)bounded unions
of languages. The class of every finite union of languages
C∗ = {L(h1) ∪ · · · ∪ L(hn)|n ∈ N+}, which is called un-
bounded unions of languages.

Many classes of bounded unions of languages are shown
to be learnable from positive data (Jain, Ng, and Tay, 2001).
Some of these results is obtained thanks to Wright (1989).
He proved that a class of languages with a property, called
finite elasticity (Wright, 1989; Motoki, Shinohara, and
Wright, 1991), is learnable from positive data. He also
showed that if a class of languages has finite elasticity, the
class of k-bounded unions of these languages is learnable
from positive data. The following motivating example shows
that learnability of any bounded unions of languages does
not imply the learnability of unbounded unions of languages.
Example 1. For any set A, let the number of elements of
A be |A|. Let the hypothesis space be H = {〈0〉, 〈1〉, ...} ∪
{〈∗〉}, and a language mapping be

L(〈n〉) = {n} for 〈n〉 ∈ {〈0〉, 〈1〉, ...}
L(〈∗〉) = N.

The class of languages is C = {L(〈n〉) ⊆ N |
〈n〉 ∈ H} = {{0}, {1}, ...} ∪ {N}. Then, for k ∈
N+, the class of k-bounded unions of languages is Ck =
{ S | S ⊆ N, |S| ≤ k } ∪ { N } and the class of unbounded
unions of languages is C∗ = { S | S ⊆ N, |S| <∞} ∪
{ N }. Now we check the learnabilty of Ck. Let I be any
set of integers in a target union of languages in Ck. If
|I| is not more than k for any I , the set of hypotheses is
{〈i〉 ∈ H | i ∈ I}, which represents a target union of lan-
guages. Otherwise the set of hypotheses is {〈∗〉}. It is clear
that Ck is learnable from positive data. However, C∗ is not
learnable from positive data because of a learnability result
provided by Gold. Gold showed that any class of formal lan-
guages that contains every finite language and at least one
infinite language, called super finite is not identifiable from
positive data. C∗ consists of all finite subsets of N and one
N. N is an infinite languages. Therefore C∗ is super finite.

Additionally, there are few clues to find learnable classes
of unbounded number of languages (Jain, Ng, and Tay,
2001).

Our main result is to prove that a class of unbounded
unions of languages is learnable if a refinement operator on

the class of these languages satisfies Condition 3 (Section 2)
and the class of these languages satisfies Condition 12 (Sec-
tion 3), not the class of unbounded unions of these lan-
guages. A refinement operator transforms a hypothesis h
into other hypotheses g1, ..., gn such that L(gi) ⊆ L(h)
(1 ≤ i ≤ n). In our proof, we construct a refinement oper-
ator ρ̃ on the class of unbounded unions of languages based
on a refinement operator on the class of these languages, and
show that ρ̃ also satisfies Condition 3 to prove the learnabil-
ity of the class of unbounded unions of these languages.

The rest of this paper is organized as follows. In Sec-
tion 2, we introduce the Gold-style learning and learning
with refinement operators by Ouchi and Yamamoto. In Sec-
tion 3, we show details of unbounded unions of languages,
and show proofs for learning unbounded unions with a re-
finement operator. In Section 4, we conclude this paper.

2 Preliminaries

Let N, N+ and Q be the sets of non-negative integers, posi-
tive integers and retional numbers, respectively.

Gold-style Learning from Positive Data

Let X be a recursively enumerable set of objects. A
language is a subset of X . Let H be a recursively enu-
merable set of hypothesis, called a hypothesis space. Let
L(·), called language mapping, be a mapping from H to
2X , where there is a recursive function f : X ×H → {0, 1}
such that f(w, h) = 1 if and only if w ∈ L(h). The class
of languages is defined as C = {L(h) ⊆ X | h ∈ H}.
A triplet (C,H, L(·)) is called a concept class. The Gold-
style learning (1967), identification in the limit from posi-
tive data is a learning model in which a learner, often called
an inductive inference machine, IIM receives examples from
a learning target language C ∈ C one by one. Each time
IIM receives a new example, it outputs a hypothesis h ∈ H
as a conjecture that may represent the target language. We
would like the conjecture to converge to a hypothesis h that
indeed represents C = L(h). More formally, A positive
presentation of a language C ∈ C is an infinite sequence
σ = 〈σ[1], σ[2], ...〉 of objects in which all and only el-
ements of C occur. We denote by σn, the prefix of σ of
length n, i.e., σn = 〈σ[1], ..., σ[n]〉. Each object in σ is
called a (positive) example. IIM(σn) denotes n-th outout of
the IIM which receives σ. If there is N ∈ N+ such that
∀i ≥ N, [IIM(σi) = IIM(σN)], we say the IIM converges
to IIM(σN) on σ. We say that the IIM identifies a language
C in the limit from positive data if IIM converges to h such
that L(h) = C on any positive presentation σ of C. For
a concept class (C,H, L(·)), if an IIM identifies C in the
limit from positive data for all C ∈ C, we say that an IIM
identifies C in the limit from positive data. A concept class
(C,H, L(·)) is identifiable from positive data if and only if
there exists an IIM that identifies the class C in the limit from
positive data.

Procedure Learn-with-Refinement-and-MINL(H, ρ)
Input: A positive presentation σ = 〈e1, e2, ...〉 ofC, a map-

ping L fromH to C.
Output: An enumeration ofH

1: S := ∅, L(h0) := ∅
2: for i = 1 to∞ do
3: S := S ∪ {ei}
4: if ei ∈ L(hi) then
5: hi := hi−1
6: else if MINL(T, S, i) = “no hypothesis” then
7: hi := hi−1
8: else
9: hi := MINL(T, S, i)

10: end if
11: output hi as a guess
12: end for

Algorithm MINL(T, S, n)
Input: A finite set T in Theorem 4, any finite subset S of

any language C, and a natural number n.
Output: A hypothesis inH or “no hypothesis”

1: H0 := T
2: for j = 0 to n do
3: if ∃h ∈ Hj .[S ⊆ L(h) ∧ ∀g ∈ ρ(h).S 6⊆ L(g)] then
4: return the hypothesis h which satisfies the condi-

tion above and is firstly enumerated
5: end if
6: Hj+1 := {g ∈ H | g ∈ ρ(Hj) ∧ S ⊆ L(g)}
7: end for
8: return “no hypothesis”

Figure 1: Learning with the MINL strategy and a refinement
operator (Ouchi and Yamamoto, 2010).

Learning from Positive Data with Refinement
Operators
In this section, we review the work of Ouchi and Ya-
mamoto (2010) concerning learning from positive data with
refinement operators. Refinement operators were firstly in-
troduced by Shapiro for learning logic programs (1981)
to search for hypotheses efficiently. Laird (1988) adapted
refinement operators for learning a class of languages
from positive and negative examples. Ouchi and Ya-
mamoto modified the definition of refinement operators and
provided learning procedure Learn-with-Refinement-and-
MINL(H,ρ) and an algorithm MINL(T, S, n) in Figure 1.
Then, they proved that classes of languages are learnable
from positive data if a refinement operator satisfies Condi-
tion 3. The definition of their refinement operators are for-
mally defined as follows.

Definition 2 (Ouchi and Yamamoto (2010)). Let
(C,H, L(·)) be a concept class. A mapping ρ : H → 2H is
called a refinement operator on the class if it satisfies the
following three condition:

[R-1] For every h ∈ H, ρ(h) is recursively enumerable.
[R-2] For every h ∈ H, g ∈ ρ(h)⇒ L(g) ⊆ L(h).

[R-3] There exists no sequence h1, h2, ..., hn of hypotheses
such that h1 = hn and hi+1 ∈ ρ(hi) (1 ≤ i ≤ n− 1).

For any H ⊆ H, we define ρ(H) = {h′ ∈ H | ∃h ∈
H, [h′ ∈ ρ(h)]}. ρk(h) is defined for each k ∈ N as
ρ0(h) = {h}, and ρk+1(h) = ρ(ρk(h)). We also define
ρ∗(h) =

⋃
k∈N ρ

k(h), and ρ+(h) =
⋃

k∈N+ ρk(h), respec-
tively.

Ouchi and Yamamoto proved that every concept class is
identifiable in the limit from positive data if it admits a re-
finement operator satisfying the next conditions.

Condition 3. Let ρ be a refinement operator on (C,H, L(·)).
[A-1] ρ is locally finite, which means ρ is a computable

function.
[A-2] ρ is semantically complete, which means that, for

every h ∈ H and every C ∈ C such that C (L(h),
there exists a hypothesis h′ such that L(h′) = C and
h′ ∈ ρ+(h), in other words, there exists a finite sequence
h1, h2, ..., hn ∈ H such that h1 = h, L(hn) = C and
hi+1 ∈ ρ(hi) (1 ≤ i ≤ n− 1).

[A-3] There is a finite set T ⊆ H such that C =
{L(h) | h ∈ ⋃t∈T ρ

∗(t) }. We call T an initial hypoth-
esis set.

[A-4] There is no infinite sequence h1, h2, ... ∈ H such
that hi+1 ∈ ρ(hi) and L(hi) = L(hi+1) for all i ≥ 1.

Note that [A-3] is slightly weaker than the original.

Theorem 4 (Ouchi and Yamamoto 2010). If a refinement
operator on a concept class satisfies Condition 3, the concept
class is identifiable in the limit from positive data.

In the proof of Theorem 4, Ouchi and Yamamoto showed
that the learning procedure Learn-with-Refinement-and-
MINL(H, ρ) illustrated in Figure 1 works for correct learn-
ing.

Example 5. Let

H0 = {〈m,n〉 | m,n ∈ N+},
L(〈m,n〉) = {(x, y) ∈ Q×Q | m ≤ x, n ≤ y}, and

C0 = {L(〈m,n〉) | m,n ∈ N+}.
Clearly (C0,H0, L(·)) is a concept class. Let ρ0(〈m,n〉) =
{〈m+ 1, n〉, 〈m,n+ 1〉} be a mapping :H → 2H and T =
{〈1, 1〉} as the initial hypothesis set. Then, ρ0 is a refinement
operator and satisfies [A-1] to [A-4]. Thus (C0,H0, L(·)) is
identifiable from positive data.

3 Learning Unbounded Unions of Languages
with a Refinement Operator

In this section, we prove that the class of unbounded unions
of languages is learnable from positive data if (C,H, L(· · ·))
satisfies Condition 12 and admits a refinement operator sat-
isfying Condition 3.

Bounded Unions of Languages
Definition 6 (Bounded union). For a positive k and a
concept class (C,H, L(·)), the concept class of k-bounded

unions of languages (Ck,Hk, L(·)) is defined as

Hk = {{h1, ..., hi} | 1 ≤ i ≤ k},
L({h1, ..., hn}) = L(h1) ∪ · · · ∪ L(hn),

Ck = {L(H) | H ∈ Hk}.
for some positive integer k.

Motoki, Shinohara, and Wright (1989; 1991) presented
a property of the class of languages, called finite elasticity.
Wright (1989) proved that if a class of languages has finite
elasticity, it is learnable from positive data. He also proved
the following proposition:
Proposition 7 (Wright 1989). If a class of languages C has
finite elasticity, then the class of up to k unions of languages
Ck, called bounded unions of languages, also has finite elas-
ticity for some positive integer k.

That means once a language class C is shown to have finite
elasticity, the class of bounded unions of languages has also
finite elasticity and thus is learnable.

Proposition 7 gives many rich identifiable classes of lan-
guages. However, the class of unbounded unions of lan-
guages is beyond the scope of this proposition (See the Ex-
ample 1).

Unbounded Unions of Languages
Some studies tackled the learning of unbounded unions of
languages. Shinohara and Arimura (2000) does the first
important work for unbounded unions of languages. They
showed that if a class of languages satisfies a certain strong
condition in addition to finite elasticity, the class of un-
bounded unions of languages will have finite elasticity and
thus be the learnable from positive data.

However, there are few classes of unbounded unions of
languages which are proved to be identifiable from positive
data using their results. In this section, we provide another
approach to show learnability of unbounded unions of lan-
guages.
Definition 8 (Unbounded union). For a concept class
(C,H, L(·)), the concept class of unbounded unions of lan-
guages (C∗,H∗, L(·)) is defined as

H∗ = {{h1, ..., hi} | i ∈ N+},
L({h1, ..., hn}) = L(h1) ∪ · · · ∪ L(hn),

C∗ = {L(H) | H ∈ H∗}.
Note that any set of hypotheses in H∗ has finite number

of elements.
Example 9 (Example 5 continued). For H =
{〈1, 3〉, 〈2, 2〉, 〈4, 1〉} ∈ H∗, the language L(H) =
L(〈1, 3〉) ∪ L(〈2, 2〉) ∪ L(〈4, 1〉) is illustrated in Figure 2.

Lemma 10 (Kanazawa 1998). Let C1, C2, ... be an infinite
sequence of languages in C. If it satisfies C1 (C2 (· · ·
and

⋃
i∈N+ Ci ∈ C, then the concept class is not identifiable

from positive data.
The following motivating example shows that the ex-

istence of a refinement operatpr ρ on a concept class
(C,H, L(·)) satisfying Condition 3 does not imply the learn-
ability of the concept class (C∗,H∗, L(·)).

H ={ , , }	

m	

n	

L ({ , , })
=L()∪L()∪L()	

L() ∪ L() ∪ L()	

h1, 3i
h2, 2i

h4, 1i

1/4 1/2

1/2 1/3

1
xxx

yyy

x

y

1

1

1/2

1/3

1/4 1/2 1

Figure 2: Unions of languages in Example 9.

Example 11 (Ouchi and Yamamoto 2010). Let a hypothesis
space be N+, and a language mapping be

L(n) =

{x ∈ Q | 0 ≤ x ≤ 1} if n = 0,{
x ∈ Q | 0 ≤ x ≤ 1 + 1

m

}
if n = 2m− 1, and{

x ∈ Q | 0 ≤ x ≤ 1 + 1
m

}
\
{

1
m+k ∈ Q | k ∈ N+

}
if n = 2m.

for some m ∈ N, for all n ∈ N+. A refinement operator on
the class is defined as: ∀n ∈ N,∃m ∈ N+,

ρ(n) =

∅ if n = 0

{2m, 2m+ 1, 0} if n = 2m− 1

∅ if n = 2m

for all n ∈ N+. Let an initial hypothesis set be T = {1}.
Then this refinement operator satisfies [A-1] to [A-4]. The
concept class (C,H, L) is identifiable from positive data by
Theorem 4.

Consider the concept class (C∗,H∗, L(·)). Let Dn =⋃n
k=1 C2k ∈ C. Then Dn (Dn+1 for all n ∈ N+. More-

over,
⋃

n∈N+ Dn = C1. From Lemma 10, the concept class
(C∗,H∗, L) is not identifiable from positive data.
Condition 12. Let (C,H, L(·)) be a concept class.
[C-1] L(·) is bijective.
[C-2] For any p, q1, q2, ..., qn ∈ H,

L(p) ⊆ L(q1) ∪ L(q2) ∪ · · · ∪ L(qn)
⇔ ∃i(1 ≤ i ≤ n), [L(p) ⊆ L(qi)].

Note that [C-2] is called compactness with respect to con-
tainment of C (Arimura, Shinohara, and Otsuki, 1994).
Lemma 13. Let (C,H, L(·)) be a concept class satisfying
[C-1] and it admit a refinement operator ρ satisfying [A-2].

∀h ∈ H, [∀g ∈ H, [L(g) ⊆ L(h)⇔ g ∈ ρ∗(h)]]
Proof. From [C-1], for any p and q inH,

L(g) = L(h)⇔ g = h

⇔ g ∈ ρ0(h)

holds. From [A-2] and [C-1], for any p and q inH,

L(g) (L(h)⇔ g ∈ ρ+(h)
holds. Therefore,

L(g) ⊆ L(h)⇔ g ∈ ρ∗(h)

Lemma 14. Let (C,H, L(·)) be a concept class satisfying
[C-1] and ρ be a refinement operator on (C,H, L(·)) satis-
fying [A-1] to [A-2]. For, g, h ∈ H, whether g belongs to
ρ∗(h) is decidable.

Proof. We present an algorithm which decides whether g ∈
ρ∗(h). It repeats the following procedure for k = 1, 2, . . .
until it finds a proof for or a counterexample to g ∈ ρ∗(h).
Let e1, e2, . . . be an enumeration of the objects of X . In
the kth repetition, the algorithm checks whether g ∈ ρk(h),
which is computable by [A-1]. If so, it outputs “true” and
halts. Otherwise, if ek ∈ L(g) \ L(h), it outputs “false” and
halts.

If g ∈ ρ∗(h), which means L(g) ⊆ L(h), there is no
e ∈ L(g) \ L(h), thus it never outputs “false”. Since there
is k such that g ∈ ρk(h) from [A-2], at the kth repetition,
it outputs “true”. If g /∈ ρ∗(h), which means L(g) * L(h),
there is ek ∈ X such that ek ∈ L(g) \ L(h).
Example 15 (Example 11 continued). (C∗,H∗, L) does not
have [C-2], because C6 ⊆ C4 ∪C8 does not mean C6 ⊆ C4

or C6 ⊆ C8.

Example 16 (Example 5 continued). ρ0 onH0 satisfies

〈m,n〉 ∈ ρ∗0(〈m′, n′〉) if and only if m′ ≤ m ∧ n′ ≤ n.
Then

L(〈m,n〉) ⊆ L(〈m′, n′〉) ⇔ m′ ≤ m ∧ n′ ≤ n
⇔ 〈m,n〉 ∈ ρ∗0(〈m′, n′〉).

That means [C-1] holds. Let L(〈m,n〉) ⊆ L(〈m1, n1〉) ∪
· · · ∪ L(〈mk, nk〉) for some k ∈ N+. From 〈m,n〉 ∈
L(〈m,n〉), there exists i (1 ≤ i ≤ k) such that 〈m,n〉 ∈
L(〈mi, ni〉).
〈m,n〉 ∈ L(〈mi, ni〉) ⇔ mi ≤ m ∧ ni ≤ n

⇔ 〈m,n〉 ∈ ρ∗0(〈mi, ni〉).
This means that [C-2] holds.

Proving Learnability of Unbounded Unions of
Languages with a Refinement Operator on the
Class
We prove that a concept class (C∗,H∗, L(·)) is identifiable
from positive data when (C,H, L(·)) satisfies condition [A-
1] to [A-4] and [C-1] to [C-2]. In the following, we deal with
concept classes satisfying conditions [A-1] to [A-4] and [C-
1]-[C-2].

Lemma 17.

∀P,Q ∈ H∗.[L(P) ⊆ L(Q)⇔ ∀p ∈ P.[∃q ∈ Q.[p ∈ ρ∗(q)]].

Proof. “If” part clearly holds. From [C-2], there is q ∈ Q
such that L(p) ⊆ L(q) for any p ∈ P . From [C-1] and
Lemma 13, “only if” part holds.

Definition 18 (reduce operator). A mapping reduce : H∗ →
H∗ called the reduce operator is defined by

reduce(P) = {p ∈ P | ∀q ∈ P \ {p}, [p 6∈ ρ+(q)]}.
If P = reduce(P), P is called reduced. Note that

reduce(·) is computable because of Lemma 14.
Lemma 19. Let P be a finite subset of H. The following
always holds.

L(P) = L(reduce(P)).

Proof. Let Q = P \ reduce(P). Because of the definition
of the reduce operator, ∀q ∈ Q, [∃p ∈ reduce(P), [q ∈
ρ+(p)]]. From Lemma 17, L(Q) ⊆ L(reduce(P))
holds. Therefore, L(P) = L(reduce(P)) ∪ L(Q) =
L(reduce(P)).

Definition 20. Let the concept class of languages be
(C∗,H∗, L(·)). We define

H∗red = {H ∈ H∗ | H = reduce(H)}.
We define a map ρ̃ based on ρ for the unbounded unions

of languages. It will be shown that ρ̃ is indeed a refinement
operator on (C∗,H∗, L(·)) and moreover satisfies the condi-
tions [A-1] to [A-4].
Definition 21. We define a new mapping ρ̃ : H∗ → 2H

∗
as

follows:

ρ̃(P) =
⋃

p∈reduce(P)

({
P ∪ ρ (p) \ {p}

})
∪
⋃
p∈P

(
{P \ {p}

})
.

Lemma 22. Let P ∈ H∗ and Q = P ∪ ρ(p) \ {p} for some
p ∈ reduce(P). Then,

L(Q) (L(P) .

Proof. We have L(ρ(p)) ⊆ L(p) by [R-2]. Therefore

L(Q) ⊆ L(P) ∪ L(ρ(p)) = L(P) .

To derive a contradiction, suppose that L(Q) = L(P). By
[C-2], there is q ∈ Q such that L(p) ⊆ L(q), which implies
p ∈ ρ∗(q) by [C-1] and Lemma 13. Since p /∈ Q, we have
p 6= q, i.e., p ∈ ρ(q). The fact p ∈ reduce(P) implies q /∈ P .
Then q must be from ρ(p), which means L(q) ⊆ L(p) by
[R-2]. This contradicts p ∈ ρ(q).
Lemma 23. The following two holds.
– the mapping ρ̃ of Definition 21 satisfies the conditions [R-

1]-[R-3] of refinement operators, and
– [A-1] and [A-4] on (C∗,H∗, L(·)) holds.

Proof. [A-1] Let P = {p1, p2, ..., pn} ∈ H∗ and P ′ =
reduce(P) = {p′1, ..., p′m}. Let Qi = P \ {pi} (1 ≤ i ≤
n) and Qi+n = P ∪ ρ(p′i) \ {p′i} (1 ≤ i ≤ m), respec-
tively. Then ρ̃(P) = {Q1, ..., Qn, Qn+1, ..., Qm+n}, that
is, ρ̃(P) is finite and enumerable, and ρ̃ is computable be-
cause reduce(·) is computable.

[R-1] It immediately follows from [A-1].
[R-2] If Q ∈ ρ̃(P), either

(1) Q = P \ {p} for some p ∈ P , or
(2) Q = (P \ {p}) ∪ ρ(p) for some p ∈ reduce(P).

In the case (1), L(Q) = L(P \ {p}) ⊆ L(P). In the case
(2), L(Q) (L(P) from Lemma 22.

[A-4] To derive a contradiction, suppose that there was an
infinite sequence of hypotheses P1, P2, ... ∈ H∗ such that
Pi+1 ∈ ρ̃(Pi) and L(Pi) = L(Pi+1) for all i ≥ 1.
Lemma 22 implies Pi+1 = Pi \ {pi} for some pi ∈ Pi.
That is, P1) P2) P3) . . . , which is impossible by the
finiteness of P1.

[R-3] Suppose [R-3] does not hold. There exists a finite
sequence P1, ..., Pn ∈ H∗ such that Pi+1 ∈ ρ̃(Pi) for all
i (1 ≤ i ≤ n − 1) and P1 = Pn. From [R-2], we have
L(P1) ⊇ · · · ⊇ L(Pn) ⊇ L(P1). That is, L(P1) = · · · =
L(Pn) = L(P1). This is impossible by [A-4].

Lemma 24 (Semantical completeness of ρ̃).

∀P ∈ H∗, [∀Q ∈ H∗red, [L(Q) ⊆ L(P)⇒ Q ∈ ρ̃∗(P)]]
holds. Therefore, [A-2] on (C∗,H∗, L(·)) also holds by
Lemma 19.

Proof. Let P ∈ H∗ and Q ∈ H∗red be such that L(Q) ⊆
L(P). Lemma 17 implies ∀q ∈ Q,∃p ∈ P, [q ∈ ρ∗(p)], that
is, Q ⊆ ρ∗(P).

For H ∈ H∗ and h ∈ ρ∗(H), we define

δ(h,H) = min{ k ∈ N | ∃h′ ∈ H,h ∈ ρk(h′) }
and for H ′ ⊆ ρ∗(H),

δ(H ′, H) =
∑
h∈H′

δ(h,H) .

We show by induction on δ(Q,P) that Q ⊆ ρ∗(P) im-
plies Q ∈ ρ̃∗(P).
Basis: If δ(Q,P) = 0, we have Q ⊆ P . Clearly Q ∈
ρ̃∗(P).

Induction Step: Suppose δ(Q,P) > 0. Let f be a function
from Q to P such that δ(q, f(q)) = δ(q, P) for all q ∈ Q.
Let

Pf = { f(q) ∈ P | q ∈ Q } \Q ,
P ′ = (P ∩Q) ∪ Pf .

Since P ′ is a subset of P ,

P ′ ∈ ρ̃∗(P). (1)

Note that Pf is not empty because δ(Q,P) 6= 0. Let pmax

be an element of reduce(Pf). BecauseQ is reduced, pmax

is also in reduce(P ′). We let

P ′′ = (P ′ ∪ ρ(pmax)) \ {pmax} ∈ ρ̃∗(P ′) . (2)

For each q ∈ Q we have{
δ(q, P ′′) = δ(q, P)− 1 if f(q) = pmax,

δ(q, P ′′) ≤ δ(q, P) otherwise .

Indeed there is q ∈ Q such that f(q) = pmax. Therefore,

δ(Q,P ′′) < δ(Q,P) .

By the induction hypothesis,

Q ∈ ρ̃∗(P ′′) (3)

holds. By (1), (2) and (3) we finally obtain

Q ∈ ρ̃∗(P) .

Lemma 25. [A-3] on (C∗,H∗, L(·)) holds.

Proof. For every C ∈ C∗, there is Q ∈ H∗red such that
L(Q) = C by Lemma 19. By [A-3] and [C-1] on ρ, we have
Q ⊆ ρ∗(T) for an initial hypothesis set T for (C,H, L(·)).
Lemma 24 implies Q ∈ ρ̃∗(T), that is, {T} is an initial hy-
pothesis set for (C∗,H∗, L(·)).

Finally, we achieve the following theorem, that is, a new
positive result of learnability of the unbounded unions of
languages.

Theorem 26 (Main Result). Let (C,H, L(·)) be a con-
cept class which admits a refinement operator ρ satisfying
Condition 3 and satisfies Condition 12 The concept class
(C∗,H∗, L(·)) is identifiable from positive data.

Proof. From Lemmas 23, 24, and 25, the refinement oper-
ator ρ̃ satisfies [A-1]-[A-4] on (C∗,H∗, L(·)). From Theo-
rem 4, (C∗,H∗, L(·)) is identifiable from positive data.

Comparing Our Result with Other Learnability
Result
There are some sufficient conditions for learnability of
classes of languages from positive data. We introduce one
of them, Condition 27, and compare it with our result.

Condition 27. Let (C,H, L(·)) be a concept class such that
L(·) satisfies [C-1]. The concept class (C,H, L(·)) satisfies
Condition 27 if for any h ∈ H, there exists a finite set Sh ⊆
L(h) such that

– Sh is finite,
– Sh ⊆ L(h), and
– ∀h′ ∈ H, [Sh ⊆ L(h′)⇒ L(h) ⊆ L(h′)].

We say that a concept class has characteristic sets if it
satisfies Condition 27.

Theorem 28. Let (C,H, L(·)) be a concept class. The con-
cept class (C,H, L(·)) is identifiable from positive data if
(C,H, L(·)) has characteristic sets.

It is known that if a concept class has finite elasticity as we
mentioned in Section 3, the concept class has characteristic
sets. We show that our result does not imply Condition 27 by
presenting a non-trivial learnable class of unbounded unions
of languages. This example is inspired by Ouchi and Ya-
mamoto (2010).

Example 29. Let a hypothesis space be N and

L(n) =

{ x ∈ Q | 0 ≤ x ≤ 1 } if n = 0{
x ∈ Q

∣∣ 0 ≤ x ≤ 1 + 1
m

}
if n = 2m− 1{

x ∈ Q
∣∣ 0 ≤ x ≤ 1 + 1

m

}
\
{

1
m+k ∈ Q

∣∣∣ k ∈ N+
}

\
{
1 + 1

m+ k
2

∈ Q
∣∣∣ k ∈ N+

}
if n = 2m

for some m ∈ N+ for all n ∈ N.
A refinement operator ρ on the class is defined as : ∀n ∈

N,∃m ∈ N+,

ρ(n) =

∅ if n = 0

{2m, 2m+ 1, 0} if n = 2m− 1

∅ if n = 2m

Let T = {1}. Then ρ clearly satisfies [A-1] to [A-4]. L(·)
on the concept class clearly satisfies [C-1]. Now we show
the concept class satisfies [C-2].

Suppose that

L(2m) ⊆
⋃
k∈I

L(k)

for some m ∈ N+ and finite set I ⊆ N. The fact 1 + 1/m ∈
L(2m) implies that there is k ∈ I such that 1+1/m ∈ L(k),
which means

k ∈ {1, 3, . . . , 2m− 1} ∪ {2m} .
For any k ∈ {1, 3, . . . , 2m− 1} clearly L(2m) ⊆ L(k).

Suppose that

L(2m− 1) ⊆
⋃
k∈I

L(k)

for some m ∈ N+ and finite set I ⊆ N. The fact 1 +
1

m+1/2 ∈ L(2m) implies that there is k ∈ I such that
1 + 1

m+1/2 ∈ L(k). This means that

k ∈ {1, 3, . . . , 2m− 1} ,
for which we have L(2m− 1) ⊆ L(k).

Suppose that

L(0) ⊆
⋃
k∈I

L(k)

for some finite set I ⊆ N. Let m = max I . The fact 1
m+1 ∈

L(0) implies that there is an odd number k in I , for which
we have L(0) ⊆ L(k).

Hence, the concept class satisfies [C-2].
Here we show that no finite set can be a characteristic set

of L(0). For a finite set S ⊆ L(0), let

m =

⌈
1

minS

⌉
.

Then we have S ⊆ L(2m) and L(0) * L(2m).

4 Concluding Remarks
We have proved that the concept class (C∗,H∗, L(·)) is iden-
tifiable from positive data with the refinement operator ρ̃ if
a refinement operator ρ on (C,H, L(·)) satisfying [A-1] to
[A-4] and (C,H, L(·)) satisfies Condition 12.

The Theorem 26 in this paper is a generalization of Theo-
rem 4 in (Ouchi and Yamamoto, 2010): they showed a learn-
able class, called a class of unbounded unions of constant-
free regular tree pattern languages. Indeed their target class
satisfies the conditions [C-1] and [C-2], although their re-
finement operator for the class of unions of these langauges
is different from ours. A tree is a term or an atom in formal
logic, and a tree languages is the set of trees which are the
ground instances of a tree pattern.

Arimura et al. (1994) presented an efficient way, called
minimal multiple generalization, to learn heads of definite
clauses of a logic program from positive data. To obtain sev-
eral definite clauses of the program, it is important to di-
vide a set of positive data into subsets and construct least
common generalizations from these subsets. Arimura, Shi-
nohara, and Otsuki (1991) gives a way to divide positive
data into bounded number of divisions. Ishizaka, Arimura,
and Takeshi (1993) pointed out that learning tree pattern lan-
guages is applicable to know heads of definite clauses, and
Arimura et al. (1994) shows that sets of bounded number
of definite clauses without bodies, called unit clauses, are
learnable from positive data. Learning unbounded unions of
constant-free regular tree pattern languages (Ouchi and Ya-
mamoto, 2010) means that a class of finite sets of logic pro-
grams that consists of unit clauses are learnable from posi-
tive data.

In our future work, we will give new learnable classes of
unbounded unions of languages, not only formal languages
but also logic programs using our result.

References
Angluin, D. 1980. Finding patterns common to a set

of strings. Journal of Computer and System Sciences
21(1):46–62.

Arimura, H.; Shinohara, T.; Otsuki, S.; and Ishizaka, H.
1994. A generalization of the least general generaliza-
tion. In Machine Intelligence 13, 59–85. Oxford Univer-
sity Press.

Arimura, H.; Shinohara, T.; and Otsuki, S. 1991. A polyno-
mial time algorithm for finding finite unions of tree pat-
tern languages. In Proceedings of the Second Interna-
tional Workshop on Nonmonotonic and Inductive Logic,
118–131. Springer-Verlag.

Arimura, H.; Shinohara, T.; and Otsuki, S. 1994. Finding
minimal generalizations for unions of pattern languages
and its application to inductive inference from positive
data. In Proceedings of the 11th Annual Symposium
on Theoretical Aspects of Computer Science, 649–660.
Springer-Verlag.

de la Higuera, C. 2010. Grammatical inference: learning
automata and grammars. Cambridge University Press.

Gold, E. M. 1967. Language identification in the limit.
Information and control 10(5):447–474.

Ishizaka, H.; Arimura, H.; and Takeshi, S. 1993. Inductive
learning of logic programs from positive facts using min-
imal multiple generalization (in japanese). Journal of the
Japanese Society for Artificial Intelligence 8(4):419–426.

Jain, S.; Ng, Y.; and Tay, T. 2001. Learning languages in
a union. In Abe, N.; Khardon, R.; and Zeugmann, T.,
eds., Algorithmic Learning Theory, volume 2225 of Lec-
ture Notes in Computer Science. Springer Berlin Heidel-
berg. 235–250.

Kanazawa, M. 1998. Learnable Classes of Categorial
Grammars. Studies in Logic, Language and Information.
The Center for the Study of Language and Information
Publications.

Laird, P. D. 1988. Learning from good and bad data. Nor-
well, MA, USA: Kluwer Academic Publishers.

Motoki, T.; Shinohara, T.; and Wright, K. 1991. The correct
definition of finite elasticity: corrigendum to identification
of unions. In Proceedings of the fourth annual workshop
on Computational learning theory, COLT ’91, 375–. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Ouchi, S., and Yamamoto, A. 2010. Learning from positive
data based on the minl strategy with refinement operators.
In Nakakoji, K.; Murakami, Y.; and McCready, E., eds.,
New Frontiers in Artificial Intelligence, volume 6284 of
Lecture Notes in Computer Science. Springer Berlin Hei-
delberg. 345–357.

Shapiro, E. Y. 1981. Inductive inference of theories from
facts. Research Report YALEU/DCS/RR-192, Yale Uni-
versity.

Shinohara, T., and Arimura, H. 2000. Inductive inference
of unbounded unions of pattern languages from positive
data. Theoretical Computer Science 241(1):191–209.

Wright, K. 1989. Identification of unions of languages
drawn from an identifiable class. In Proceedings of the
second annual workshop on Computational learning the-
ory, COLT ’89, 328–333. San Francisco, CA, USA: Mor-
gan Kaufmann Publishers Inc.

