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Abstract. We propose an algorithm based on a dynamic programming algorithm for finding local
structures with the highest similarity within two semi-ordered trees. Finding such local structures is
useful, because trees treated in many fields often share only limited regions. For example in botany,
trees representing plant architectures often share only local structures and such local structures
have an important property. A semi-ordered tree is a tree with a total semi-order relation defined on
the set of children of each vertex and is used as the topological structure of such plant architectures.
The proposed method for evaluating the similarity between two semi-ordered trees is based on the
algorithm for computing the tree edit distance between them. Our method is to evaluate the local
similarity by selecting the constrained mapping, and additionally to extract the local structure
with the highest similarity, that is, the maximum score.

1 Introduction

Recently, the comparison of trees has had important roles in many fields, such as biology and botany.
The goal of our research is to give an efficient method for comparisons of two trees that is useful for such
fields. The class of trees varies in accordance with the fields, and the similarity between trees, which
should be the foundation of comparing trees, depends on the class. A semi-ordered tree is a tree with
a total semi-order relation defined on the set of children of each vertex. A semi-ordered tree is used as
a model of a topological structure of a plant architecture and a self-assembly of a plant because the
semi-order relations are measured between the components of a plant [7].

Similarities between two trees are categorized into two types, global and local. An example of the global
similarity is based on the edit distance, which is defined by Smith and Waterman [8] for comparing two
strings. Following their works, edit distances between ordered, unordered, and semi-ordered trees are
defined by Zhang and Jiang [12, 13] and Ouangraoua and Ferraro [7]. In each class of trees, the edit
distance between two trees is the minimum sum of the costs of the edit operations (deleting, inserting,
and relabeling of a labeled node) to convert a tree to another one. It is also defined in various manners
based on a mapping which is a set of pairs of vertices with a one-to-one relation between two trees,
because computing the edit distance is equivalent to searching for the mapping which comprises the
maximum common substructure tree. Therefore, the similarity based on an edit distance is considered
the global one.

In this paper we propose the local similarity between two semi-ordered trees based on [4] and [7]. Our
idea is to use a local mapping to evaluate local similarity between semi-ordered trees. Local similarity
aims at the best pair of subtrees, such that the optimal similarity based on the scoring system is the
best possible. We give an algorithm to find the local mapping by calculating local similarity within two
semi-ordered trees. The algorithm is based on a dynamic programming algorithm and extracts the local
structure with the highest similarity. The local structure gives more relevant results than the global
approach when we deal with biological objects [4].

This paper is organized as follows: In the following section we formally define semi-ordered trees and
constrained mappings. In Section 3, we define the local similarity between two semi-ordered trees and
the dynamic programming algorithm for computing the local similarity. In the last section, we give a
conclusion showing the complexity of our algorithm, and explain our future work.

2 Notation and Definition

A labeled rooted tree is T = (V,E, r, α) where V is a set of vertices, E is a set of edges, r is the root
vertex and α is a label function. Unless otherwise noted, we represent a labeled rooted tree as T = (V,E)
for simplification. Moreover, we often identify T with its vertex set V . A label function is defined as



Fig. 1. An example of a semi-ordered tree Fig. 2. An example of a partition of a semi-ordered tree

α : V → Σ, where Σ is an alphabet. A tree θ = (∅, ∅) is especially called the empty tree. A subtree
of T rooted at a vertex v which includes all descendants of v and v itself are denoted by T [v]. The
forest which is induced by deleting v from T [v] and deleting edges which connect v with children of v
is denoted by F [v]. If X is the set of root vertices of trees in F [v], F [v] is denoted by F [X]. The set
of children of a vertex v is denoted by child(v). The nearest common ancestor of vertices v and w is
denoted by nca(v, w). The ancestor-descendant relation is denoted by < or ≤, and v < w means w is
an ancestor of v and v ≤ w means v < w or v = w. The prefix of a tree is either the empty tree or a
patial subtree T ′ = (V ′, E′) of T [v] such that, for V ′ ⊆ V and every u ∈ V ′ \ {v}, there exists a parent
vertex v′ of u satisfying that v′ ∈ V ′. For a tree T [v] = (V,E) and a vertex r ∈ V , a local structure of
T [v] is a prefix of T [r]. For a tree T = (V,E) and v ∈ V , let the set of all prefixes of T [v] be Tpre[v].
For a forest F [v], we define the set of all prefixes of a forest F [v] whose root vertices are v1, . . . , vn as
Fpre[v] = {{t1, . . . , tn} | t1 ∈ Tpre[v1], . . . , tn ∈ Tpre[vn]}.

Semi-ordered trees
Well-known classes of trees are ordered trees and unordered trees. In this paper, we treat the class

of semi-ordered trees, proposed in [7], which is a super class of both of the classes. A semi-ordered tree
is a tree with a total semi-order relation defined on the set of children of each vertex. A semi-order
relation ⊑ is a reflexive and transitive binary relation. If ⊑ satisfies the comparability, ⊑ is called a total
semi-order relation.

Definition 1 (Semi-ordered tree). A semi-ordered tree is a pair (T, S⊑) with S⊑ = {⊑v| v ∈ T}
where ⊑v is a total semi-order relation on child(v).

An example of semi-ordered trees is shown in Fig. 1. The children of a vertex of a semi-ordered tree are
divided into equivalence classes which are totally ordered (see Fig.2). For any v ∈ T and s, t ∈ child(v),
we represent a binary relation which satisfies s ⊑v t and t ̸⊑v s as s ⊏v t. For any v, w ∈ V , v ⊑ w is
defined as follows:

∀v, w ∈ V. v ⊑ w ⇐⇒
{
v ≤ w , or
∃s, t ∈ child(nca(v, w)) s.t. v ≤ s, w ≤ t, and s ⊏nca(v,w) t.

For every s, t ∈ child(v), we define

s ≡ t ⇐⇒ s ⊑v t and t ⊑v s.

For any s ∈ child(v), the equivalence class of the children s is denoted by [s]:

[s] = {t ∈ child(v) | s ≡ t}.

The division of child(v), denoted by C(v)≡, is defined as

C(v)≡ = {[s] | s ∈ child(v)}.

In Fig.2, we show an example of the division of the vertices of the tree in Fig.1, the division of child(v)
is C(v)≡ = {{v1, v2}, {v3, v4}, {v5}}. A tree T is unordered iff |C(v)≡| = 1 for every v ∈ T , and ordered
iff |C(v)| = |child(v)| for every v ∈ T .

Constrained mappings
A mapping is a set of pairs of vertices. Various types of mappings have been proposed. They are

distinguished by their restrictions, for example, the restriction between the ancestor-descendent relation.



Our method adopts the constrained mappings proposed by Zhang [13]. Let T1 = (V1, E1) and T2 =
(V2, E2) be rooted semi-ordered trees. A subset M of V1 × V2 is called a constrained mapping on semi-
ordered trees if any pairs (u1, u2), (v1, v2) and (w1, w2) ∈ M satisfy all of the four conditions.

u1 = v1 ⇐⇒ u2 = v2 (one-to-one relation),

u1 ≤ v1 ⇐⇒ u2 ≤ v2 (ancestor-descendant preservation),

u1 ⊑ v1 ⇐⇒ u2 ⊑ v2 (total semi-order preservation), and

w1 < nca(u1, v1) ⇐⇒ w2 < nca(u2, v2) (structure preservation).

Restricted mappings
For two trees T [v] and T [w], let X1 and X2 be subsets of child(v) and child(w), respectively. Let

VF [X1] and VF [X2] be all the vertices of F [X1] and F [X2], respectively. A constrained mappingM between
two forests F [X1] and F [X2] is called a restricted mapping if any (v1, v2) and (w1, w2) ∈ M satisfy the
following condition:

nca(v1, w1) ∈ VF [X1] ⇐⇒ nca(v2, w2) ∈ VF [X2].

3 Local similarity

Scoring systems
If we use a distance function between trees to find local structures, the smaller two local structures

are, the higher the similarity between them is. Then, it is obvious that the similarity between two local
structures is the maximum when each of the local structures is an empty tree. In order to avoid outputting
such trivial results, we introduce a point addition scoring system, not a point deduction scoring system.
We prepare a new symbol, called an empty symbol denoted by λ ̸∈ Σ. The set of integers are denoted
by Z. A function s : (Σ ∪ {λ})× (Σ ∪ {λ}) → Z is a called scoring function if it satisfies all of the four
conditions:

s(v, w) = s(w, v),

s(v, λ) = s(λ,w) < 0,

s(v, v) > s(v, w) (if v ̸= w), and

s(v, w) ≥ s(v, λ) + s(λ,w).

For all vertices, hereafter, s(α(v), α(w)) is represented as s(v, w) for simplification.
Let T1 = (V1, E1) and T2 = (V2, E2) be rooted semi-ordered trees and M be a mapping. Then M |1

and M |2 are defined as follows.

M |1 = {v1 ∈ V1 | ∃v2 ∈ V2, (v1, v2) ∈ M}, and

M |2 = {v2 ∈ V2 | ∃v1 ∈ V1, (v1, v2) ∈ M}.

The score of a mapping M , denoted by S(M,V1, V2), is defined as

S(M,V1, V2) =
∑

(v,w)∈M

s(v, w) +
∑

v∈V1−M |1

s(v, λ) +
∑

w∈V2−M |2

s(λ,w).

The set of constrained mappings between T1 and T2 is denoted by Map[T1, T2]. The maximum score
between two prefixes of two trees is denoted by PS(T [v], T [w]). For τ1 ∈ Tpre[v] and τ2 ∈ Tpre[w], it is
defined as

PS(T1, T2) = max
τ1∈Tpre[v]
τ2∈Tpre[w]

max
M∈Map[τ1,τ2]

S(M, τ1, τ2).

The maximum score between the prefixes of forests is denoted by PS(F [v], F [w]). As is the case of
PS(T1, T2), PS(F [v], F [w]) is defined. We define the maximum similarity LS(T1, T2) as

LS(T1, T2) = max
v∈V1
w∈V2

PS(T1[v], T2[w]).

Recursive formula of local mapping between semi-ordered trees



Fig. 3. Classifying a semi-ordered tree based on the root node

Fig. 4. Classifying a semi-ordered forest based on the constrained mapping

First, we classify a pair of semi-ordered trees by focusing on the root vertex. There are four cases of
the classification in Fig. 3. However, the score of the case (4) in Fig. 3 is always smaller than the case
(3) in Fig. 3 because of the definition of s, s(v, w) ≥ s(v, λ) + s(λ,w). Therefore, we do not have to take
the case (4) into account.

Proposition 1. The local score between two semi-ordered trees T1[v] and T2[w] is represented as

PS(T1[v], T2[w]) = max


0,

maxwk∈child(w) PS(T1[v], T2[wk]) + s(λ,w), ((1) in Fig.3)
maxvk∈child(v) PS(T1[vk], T2[w]) + s(v, λ), ((2) in Fig.3)

PS(F [v], F [w]) + s(v, w). ((3) in Fig.3)

Next, we classify a pair of semi-ordered forests based on the constrained mapping on the semi-ordered
trees. We have to consider four cases of the classification as shown in Fig 4. As with Proposition 1, we
should not take the case (4) in Fig. 4 into account.

Proposition 2. Let the set of restricted mapping between two semi-ordered forests F [v] and F [w] be
R(F [v], F [w]). Then, the local score PS(F [v], F [w]) is represented as

PS(F [v], F [w]) = max


0,

maxwk∈child(w) PS(F [v], F [wk]) + s(λ,wk), ((1) in Fig.4)
maxvk∈child(v) PS(F [vk], F [w]) + s(vk, λ), ((2) in Fig.4)

maxM∈R(F [v],F [w]) S(M,F [v], F [w]). ((3) in Fig.4)



Fig. 5. An exmple of Xi, X
−
i and X+

i .

Third, we classify a semi-ordered forest based on a semi-order relation. For simplification, SR(F [v], F [w])
is defined as

SR(F [v], F [w]) = max
M∈R(F [v],F [w])

S(M,F [v], F [w]).

For the set of all root vertices V1 and V2 of F [v] and F [w], respectively, we define sets of vertices X1 and
X2 as

Xi = {w ∈ Vi | ∀v ∈ Vi, v ⊑ w} (i = 1, 2)

Moreover, we define X−
1 , X+

1 , X−
2 , and X+

2 as

X−
i = {vi ∈ Vi | ∃vj ∈ Xi s.t. vi ⊏ vj}, and X+

i = {vi ∈ Vi | ∃vj ∈ Xi s.t. vi ⊑ vj}. (i = 1, 2)

For X−
i , X+

i and Xi, it holds that X
+
i = X−

i ∪Xi. We show an example of Xi, X
−
i and X+

i in Fig. 5.

Proposition 3. The score between two forests, F [X+
1 ] and F [X+

2 ], which is based on a restricted map-
ping between the forests is represented recursively as

SR(F [X+
1 ], F [X+

2 ]) = max


0,

SR(F [X1], F [X2]) + SR(F [X−
1 ], F [X−

2 ]),
SR(F [X−

1 ], F [X+
2 ]),

SR(F [X+
1 ], F [X−

2 ]).

We show how to calculate SR(F [X1], F [X2]) below. Let I1 = {1, . . . , |X1|} (I2 = {1, . . . , |X2|}) be the set
of indices of elements of X1 = {v1, . . . , v|X1|} (X2 = {w1, . . . , w|X2|}), and I = I1 × I2. For a restricted

mapping M ∈ R(F [v], F [w]), i1 ∈ I1, and i2 ∈ I2, the mapping M (i1,i2) between T1[vi1 ] ∈ F [v] and
T2[wi2 ] ∈ F [w] is defined as

M (i1,i2) = M ∩ (T1[vi1 ]× T2[vi2 ]).

Then, because it holds that

M =
∪

(i1,i2)∈I

M (i1,i2),

and the property of the restricted mapping, we obtain that

S(M) =
∑

(i1,i2)∈I

S(M (i1,i2)).

Therefore, a mapping M which satisfies the following formula gives the local score.

S(M) = max
I

{
∑

(i1,i2)∈I

PS(τ1[vi1 ], τ2[wi2 ])}.

Finding a mapping M which satisfies the above formula is reduced to the bipartite graph maximum
score matching problem. In constructing a bipartite graph from two semi-ordered trees, it is important
to set two dummy vertices which are ev and ew as seen in Fig. 6. An example of a graph which reduces
from two forests F [v] and F [w] is shown Fig. 6.

We show a pseudocode which calculates the optimal local mapping and the local score based on it
between two semi-ordered trees in Algorithm 1 and a pseudocode which calculates the local structures
between two semi-ordered trees in Algorithm 2.



Algorithm 1 Local Score and Local mappings between Semi-ordered Trees

INPUT : Semi-ordered trees T1, T2

LS(θ, θ) = 0,MappingList = ∅
for v in T1 and w in T2 do

LS(T1[v], θ) = 0, LS(F [v], θ) = 0
LS(θ, T2[w]) = 0, LS(θ, F [w]) = 0

end for
for v in T1 and w in T2 do

Mv,w = ∅
for X1 in C(v)≡ and X2 in C(w)≡ do

Calculate SR(F [X1], F [X2]) by reducing to a graph maximum score matching problem.
Calculate SR(F [X+

1 ], F [X+
2 ]) by Proposition 3.

end for
Calculate PS(F [v], F [w]) by Proposition 2.
Calculate PS(T [v], T [w]) and the local mapping M by Proposition 1.
Add the local mapping Mv,w to MappingList.

end for
for v in T1 and w in T2 do

LS(T1, T2) = maxv,w PS(T1[v], T2[w]).
(vmax, wmax) = (v, w) satisfying PS(T1[vmax], T2[wmax]) = LS(T1, T2).

end for
LocalMapping = Mvmax,wmax ∈ MappingList
OUTPUT : LS(T1, T2) and LocalMapping.

Algorithm 2 Local structures between semi-ordered trees

INPUT : Semi-ordered trees T1, T2, and a Local Mapping M .
LocalStructure1, LocalStructure2 = ∅
Calculate M |1 and M |2 from M .
for i = 1, 2 do

for v in M |i do
V is the set of vertices in the paths of from v and vbefore to nca(v, vbefore) in T
for w in V do

if w ̸∈ LocalStructurei then
Add w to LocalStructurei.

end if
end for
vbefore = v

end for
end for
OUTPUT : LocalStructure1, LocalStructure2



Fig. 6. An example of a graph which reduces our problem on two forests into an instance of the bipartite
maximum score matching problem.

4 Concluding Remarks

In this paper, we propose a polynomial algorithm which calculates the local mapping between two semi-
ordered trees through constrained mappings. The time complexity is the same as the time complexity to
compute the constrained edit distance between semi-ordered trees [7], that is,

O(|V1||V2|max{D(T1), D(T2)} log2 max{D(T1), D(T2)}),

where D(T ) represents the maximum degrees of T , because

O(
∑
x∈T1

∑
y∈T2

∑
X1∈C(x)≡

∑
X2∈C(y)≡

|X1||X2|(|X1|+ |X2|) log2 (|X1|+ |X2|))

≤ O(|V1||V2|max{D(T1), D(T2)} log2 max{D(T1), D(T2)}).

We can improve the time complexity to

O(|V1||V2|min{D(T1), D(T2)})

by using the same technique as in [15].
Modelling plant architectures is a typical example of an application of semi-ordered trees. Calculating

the local score is useful for measuring the relevance between biological objects. Therefore we can measure
the local similarity between semi-ordered trees which are better models than ordered trees by using the
proposed method more effective.

In our future work, we should compute the edit distance among multiple semi-ordered trees and
calculate the local simirality between semi-ordered trees through various mappings other than the con-
strained mapping, especially the less-constrained mapping because the problem of computing the local
similarity between semi-ordered trees through less-constrained mappings is a MAX-SNP hard problem.
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