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Abstract. We propose a method using binary decision diagrams (BDDs) to enumerate all Boolean
functions corresponding to all premises of a given formula. The problem of finding premises ap-
pears, for example, in inductive logic programming (ILP). Generally, the number of the premises is
huge, and previous methods generate solutions under some restrictions or select optimal solutions
from given candidates. However, these method might miss some hypotheses to evaluate. Because
various fast enumeration algorithms have been developed, we are motivated by trying to develop an
efficient algorithm to enumerate all solutions analyzing it about this problem too. We use the data
structure called BDDs. BDDs can be regarded as data structures representing values of proposi-
tional formulas under their interpretations. Our method treats propositional formulas including its
input and outputs in the form of BDDs. Thereby, we can enumerate premises by operating paths
of a BDD. The method uses synthesis of BDDs to operate paths and makes a new graph called an
intermediate graph to efficiently generate BDDs to be synthesized with the given BDD.

1 Introduction

The problem of finding premises appears in inductive logic programming (ILP), a kind of machine learning
which uses features of symbolic logic. In ILP general rules are constructed so that they can explain
observed examples. More precisely, with letting B be a formula representing background knowledge,
E be a formula representing an observed example, it is required to generate a formula, H satisfying
B ∧ H |= E. This problem is called hypothesis finding. Similarly, Consequence finding is generating
E satisfying B ∧ H |= E when B and H are given. Hypothesis finding is also used, for example, to
solve a graph completion problem of metabolic pathway [3]. Since the number of solutions of each of
these problems increases exponentially, researchers have constructed methods to generate solutions under
some restrictions or to select some optimal solutions from given candidates. Various fast enumeration
algorithms have been developed in recent years. We are motivated by trying to develop an efficient
algorithm and analyzing it on the viewpoint on enumeration.

Because the relation B∧E |= H in the definition of hypothesis finding can be transformed so thatH is
a premise of ¬B∨E, our proposed method enumerates all formulas which is premises of a given formula.
Moreover, because a propositional formula can be considered as a logical function whose input is the
interpretation and which takes the value of the formula under its interpretation, we give an enumeration
of premises by using BDDs, the data structure representing a logical function. The input of our proposed
method is the BDD representing a formula and our method enumerates all premises of the input as
BDDs. We can efficiently synthesize two BDDs and get a new BDD representing the result of some
logical operations of them. Besides, outputs in the form of BDDs are very compact because BDDs can
share equivalent subgraphs. BDDs representing premises of a propositional formula tend to resemble
each other. Some methods to convert a BDD to a propositional formula have already been proposed [9].

With a BDD, we can know the value of the formula from the leaf node reached by following nodes
from the root node according to the input. We can consider that the path from the node to the leaf is
corresponding to the input interpretation. We can generate premises of a formula by manipulating the
values of the formula under some interpretations. Therefore, we can enumerate premises as BDDs by
manipulate some paths of the input BDD. However, we have to solve the problem how to manipulate a
node or an edge affects more than one path. Our proposed method manipulates paths by using synthesis
of BDDs. We call the BDD to be synthesized with a given BDD a covering BDD. We can decide the
value of some interpretation of a covering BDD. Because the complexity of synthesis depends on the
number of nodes of the BDDs, it is desired to decrease the number of nodes [8]. Our proposed method
constructs a new graph named an intermediate graph and uses it to efficiently construct the smallest
covering BDDs.

The rest of this paper is organized as follows. Section 2 provides our terminology and notation on
propositional formulas. Section 3 introduces BDDs as a data structure of propositional formulas and



states that we can generate premises by utilizing synhesis of BDDs. Section 4 explains our proposed
method by dividing it into a preprocessing and an enumeration part.

2 Preriminaries

2.1 Propositional Formula

We use x1, x2, . . . as variables, ∧ (conjunction), ∨ (disjunction) and ¬ (not) as logical connectors. proposi-
tional formulas are formulas made by applying logical connectors variables, like (x1∧¬x2)∨x3∨(x2∧x4).
We call propositional formulas just formulas for short in this paper.

We use 1 (true) and 0 (false) as the Boolean values. Let F be a propositional formula consisting of
x1, . . . , xn. The interpretation I of F is an assignment of a Boolean value to each variable. The number
of interpretation of F is 2n. A formula F takes a Boolean value corresponding to each interpretation.
The value can be determined inductively as follows:

1. ¬F takes 0 if F takes 1. Otherwise it takes 1.
2. F1 ∧ F2 takes 1 when F1 takes 1 and F2 takes 1. Otherwise it takes 0.
3. F1 ∨ F2 takes 0 when F1 takes 0 and F0 takes 0. Otherwise it takes 1.

For example, the propositional formula (x1 ∧ ¬x2) ∨ x3 ∨ (x2 ∧ x4) takes 0 under the interpretation
(x1, x2, x3, x4) = (0, 1, 0, 0) and 1 under the interpretation (x1, x2, x3, x4) = (1, 1, 0, 1). When we say a
propositional formula F1, F2 are different from each other, it means an interpretation I exists such that
I(F1) ̸= I(F2). When a propositional formula F takes a Boolean variable b under its interpretation I, we
write it as I(F ) = b. When I(F1) = 1 for all interpretations I satisfying I(F2) = 1, F1 is called a logical
consequence of F2 and F2 is called a premise of F1. This relationship is written as F2 |= F1. Examples
of premises of (x1 ∧ ¬x2) ∨ x3 ∨ (x2 ∧ x4) are x3 ∨ (x2 ∧ x4) and (x1 ∧ ¬x2) ∨ x3. When the number of
interpretation satisfying I(F ) = 1 is m, the number of premises is 2m.

2.2 Binary Decision Diagrams
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Fig. 1. An example of a BDD.

A BDD G is expressed as a rooted directed acyclic graph ⟨V,E⟩ where V is a set of nodes and E is
a set of edges. Edges are directed and there are two kinds of edges, low edges and high edges. There are
two kinds of nodes, internal nodes and two leaves. A Leaf is either ⊤ or ⊥. They have no outgoing edges.
Each internal node v has two outgoing edges, a low edge and a high edge, and also has a label. The label
is denoted by label(v)∈ {1, . . . , n}. A BDD has a unique node called the root which has no incoming
edge. For an internal node v ∈ V , low(v) means the node pointed by the low edge of v and high(v) means
the node pointed by the high edge of v. For a node v′ satisfying v′ = low(v) or v′ = high(v), we call v′ a
child of v and v a parent of v′. If v′ = low(v), then we call v′ the low child of v and If v′ = high(v), then
we call v′ the high child of v. Nodes which can be reached by following children are called descendants.

If each internal node u pointing to an internal node v satisfies label(u) < label(v), then the BDD is
ordered. A BDD is reduced if the following reduction operations cannot be applied:



1. For each internal node u whose two children are same node v, redirect all the incoming edges of u
to v and remove u.

2. For any nodes u and v whose fields are same respectively, redirect all the incoming edges of u to v
and remove u.

Fig. 1 shows an ordered and reduced BDD. We call ordered and reduced BDDs just BDDs.

BDDs are used as data structures of logical functions. Let G be a BDD representing a logical function
f(x1, . . . , xn) : {0, 1}n 7−→ {0, 1}. Then the number of labels is n, and a label i of each node means the
node is corresponding to the variable xi of the function. We can know the output of the function from
the leaf node reached by following internal nodes from the root according to the input: for each internal
node v, a node to be followed is high(v) if label(v) takes 1, low(v) otherwise. If the reached leaf is ⊤,
the function takes 1 under the input. Otherwise, it takes 0. We can efficiently synthesize two BDDs for
logical functions, f and g, with logical connectors and obtain new BDDs for functions such as f ∧ g or
f ∨ g [8].

2.3 Hypothesis Finding and BDDs

The hypothesis finding is to generate a formula H satisfying B ∧H |= E when B and E are given where
B represents background knowledge and E represents an observed example. Since the relation between
B, H and E can be transformed into H |= ¬B ∨ E and B and E are given, we can solve hypothesis
finding by generate premises given a logical consequence. Our proposed method enumerates all premises
of a given formula.

We can consider a propositional formula F as a logical function whose input is the interpretation I of F
and which takes I(F ). Therefore, we can use BDDs as a data structure of values of propositional formulas
under each interpretation. We indicate a BDD representing F by BDD(F). Then each interpretation
is corresponding to a path of the BDD which is followed to know the value. For example, the BDD
shown in Fig. 1 represents the propositional formula (x1 ∧ ¬x2) ∨ x3 ∨ (x2 ∧ x4). The interpretation
(x1, x2, x3, x4) = (0, 1, 0, 1) is corresponding to the path consisting of low edge, high edge, low edge and
high edge from the root.

Now, let P and C be propositional formulas satisfying P |= C. Then, for a propositional formula F ,
C ∧ F = P holds if F satsfies the following conditions,

1. for all interpretation I satisfying I(P ) = I(C) = 1, I(F ) = 1, and

2. for all interpretation I satisfying I(P ) = 1 and I(C) = 0, I(F ) = 0.

Therefore, when the logical consequence C is given, for each premise, we can get it by making a formula
satisfing these condition. Then we can arbitrarily decide the value of I(F ) for the interpretation I satisfing
I(P ) = 0. We can say the same things with BDDs. When BDD(C) is given, for each premise, we can get
it by making a BDD(F ) so that F satisfies the conditions and by sinthesizing it with BDD(C). We call
the BDD synthesized with the given BDD a covering BDD. Let BDD(F ) be a covering BDD of BDD(C).
The paths of BDD(F ) corresponding to the ones of BDD(C) reaching ⊥ can reach either ⊤ or ⊥. It is
desired to decide which leaf they reach so that the covering BDD is the smallest because the complexity
of synthesis of BDDs depends of the number of nodes. We decide the values so that each covering BDD
has as many shared nodes as possible.

3 Enumeration of premises by using BDDs

From the definition of premises and the relationship between a logical formula and a BDD equivalent to
the function represented by the formula, we can enumerate premises by manipulating some paths from
the root to the leaf representing output “1” of the given BDD. However, it is not easy to manipulate
nodes and edges of BDDs because such manipulation of a node or an edge affects more than one path.
Besides it, since exponential numbers of premises must be enumerated, we must consider the order of
enumeration. In order to solve these problems, our proposed method first constructs a new graph named
an intermediate graph as preprocessing. Second, it enumerates BDDs named covering BDDs and finally
obtains premises by computing conjunction of the covering BDDs and the given BDD one by one.



3.1 Intermediate graphs

We define an intermediate graph as the graph made by applying the following operations to a given
BDD.

1. Remove all edges connecting to ⊥.
2. Repeat the following operations until they cannot be applied.

(a) For an internal node v satisfying label(low(v))-label(v) > 1, make new node u and set high(u)←
low(v), low(u)← low(v), label(u)← label(v) + 1, low(v)← u.

(b) For an internal node v satisfying label(high(v))-label(v) > 1, make new node u and set high(u)←
high(v), low(u)← high(v), label(u)← label(v) + 1, high(v)← u.

(c) Apply the second reduction operation.
3. Remove all nodes which have only a child.

⊥

The given BDD

x1

x2 x2

x3 x3

x4 x4

⊤

x1

x2 x2

x3 x3

x4 x4

⊤

x1

x2 x2

x3 x3

x4 x4

⊤

x4

x3

The intermediate graph

x1

x2 x2

⊤

x4

x31 32

Fig. 2. An example flow of constructing an intermediate graph.

In Fig. 2 we illustrate an example of applications of these operations. The figure show the process to
make the right intermediate graph from the left BDD. First, by removing all edges connecting to ⊤ of
the BDD, we get the graph on the right of the arrow labeled with 1. The second step is to insert a node
between two nodes so that difference of the labels of each node and its child is 1. By this operation, we
get the graph on the right of the arrow lebeled with 2. Finally, we get the intermediate graph by removing
all nodes which have only a child. Let n be the number of variables of a given BDD and s be the number
of nodes of it. In the operations, reduction has the largest time complexity. The reduction of BDD is
proportional to the sum of the number of nodes and the number of variables. After the second operation,
the number of nodes of the graph is same as that of a quasi-reduced BDD (QDD). BDD to QDD ratio
is approximately less than or equal to 1+O(2−

n
3 n) [4]. Therefore construction of an intermediate graph

has a time complexity of O((1 + 2−
n
3 n)s+ n).

3.2 Enumeration using an intermediate graph

A covering BDD is a BDD made by redirecting some edges of an intermediate graph to ⊤. Because
each covering BDD is corresponding to a premise one to one, we need to enumerate all covering BDDs,
namely, all cases of redirection of edges of an intermediate graph. Our proposed method generates a
covering BDD by redirecting edges step by step with referring the previous covering BDD. There are
three types of redirection for each internal node:

– Low recursion, where we redirect its high edge to ⊥,
– High recursion, where we redirect its low edge to ⊥ and
– Both recursion, where we do not redirect its edges.

If we redirect both edges of an internal node t ⊤, then the node get equivalent to ⊥. Because the
redirection is equivalent to redirection of edges pointing the node to ⊥, we did not include the redirection
in the types. The type transitions in this order with generating covering BDDs. The children pointed by
its non-redirected edges are also assigned either type to. In Fig. 3 we illustrate the types of redirection.
The left one shows low recursion and its high child points ⊥. The central one shows high recursion
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Fig. 3. The order of redirection.

and its low child points ⊥. The right one shows both recursion. However both children are recursive
redirection in the figure, the operations to apply are not symmetry. We are explaining the operations of
both redirection later. We decide the type of each node by applying a procedure from the root of the
intermediate graph. The operation of the procedure can be divided as follows.

1. Continuous low recursion: assign low recursion to the current node and apply continuous low recursion
to the low child of current node.

2. Transition: Transition the type of redirection of the current node and apply continuous low recursion
to the child pointed by non-redirected edge.

3. Delegation: Do nothing on this node and apply the procedure to its child.

Let this node means the node of the intermediate graph which is applied procedure now and the previous
node means the node of the previously generated covering graph which can be reached by following same
edges as this node. Then we can write the procedure as follows.

1. If this node is ⊤, then do nothing.
2. If the previous node is ⊥, then apply continuous low recursion to this node.
3. If the previous node is low recursion,

(a) if its low child is ⊤, then transition the type of this node to high recursion.
(b) otherwise, delegate to its low child.

4. If the previous node is high recursion,

(a) if its high child is ⊤, then transition the type of this node to both recursion.
(b) otherwise, delegate to its high child.

5. If the previous node is both redirection,

(a) if the low child is ⊤, then apply this procedure to its high child and apply continuous low recursion
to its low child.

(b) otherwise, delegate to its low child.
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Fig. 4. The detailed order of both recursion



Table 1. The value to substitute for low(v) and high(v). Because low(vp) cannot point ⊤ when high(vp) points
⊤ or an internal node, we did not write the case.

low(vp) high(vp) low(v) high(v)

An internal node ⊥ replace(low(vi), low(vp)) ⊥
⊤ ⊥ ⊥ replace(high(vi),⊥)

⊥ An internal node ⊥ replace(high(vi),high(vp))

⊥ ⊤ replace(low(vi), ⊥) replace(high(vi),⊥)

Not ⊥ An internal node replace(low(vi), low(vp)) high(vp)

An internal node ⊤ replace(low(vi),⊥) replace(high(vi),high(vp))

Transition happens when the child to be delegated to and all its descendants are both redirection. Then
the child is equivalent to ⊤ and replaced ⊤ by a reduction operation. Therefore we can know when to
transition by checking whether a child of the node is ⊤ or not. Since the operation of both recursion
is different from those of the other one, We explain about it. In Fig. 4 we illustrate the order of both
recursion. In both recursion, we can consider that each subgraph rooted at a high child has a type of
redirection. For each subgraph, we redirect edges in the same way as low recursion and we make new
subgraph when the low child get to be ⊤. Fig. 5 shows examples of covering graphs generated from an
intermediate graph by redirection. Algorithm 1 shows the precise procedure of redirection and Algorithm
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Fig. 5. Examples of covering grpahs: This shows covering graphs generated from the intermediate graph. High,
Low and Both on the right of arrows mean the kind of redirection.

2 shows the whole procedure of our proposed method where the function make intermediate(r) returns
the intermediate graph of the BDD whose root is r and the function reduce(r) returns the BDD made
by apply reduction operations to the BDD whose root is r. Fig. 6 shows a whole flow of our proposed
method. The average delay time of generate a covering BDD is O(h), where h is the number of nodes of
the longest path from the root to a leaf. This can be derived by assuming any path of the intermediate
graph has the length of h and evaluate the recurrence formula of the number of calling the function
replace. The one of the worst case is O(h2). It is took when the previously generated covering BDD is
the following conditions,

1. the root and its descentdant which can be reached by follwing high edge from the root is both
redirection.

2. The children pointed by the low edge of them are ⊤.

4 Conclusion

We proposed a method to enumerate premises of a propositinal formula given as a BDD. This method
makes an intermediate graph as preprocessing. After that, it enumerates premises by repetition of gen-
erating a covering graph and a synthesis of the covering graph and the given BDD.



Algorithm 1 replace(vi, vp).

Input: vi is the pointer to an internal node of the intermediate graph, vp is th pointer to an internal node of
the previous covering BDD.
if vi = ⊤ then

return the pointer to ⊤．
end if
if label(vp) ̸= label(vi) then

make a new node and let the pointer to it be vq.
label(vq) := label(vi)
low(vq) := vp
high(vq) := vp
vp := vq

end if
make a new node and let the pointer to it be v.
label(v) := label(vi)
if vp = ⊥ then

low(v) := replace(low(vi),⊥)).
high(v) := ⊥.

else
substitute the value for low(v) and high(v) according to Table 1 and Table 2.

end if
if low(v) = high(v) then

v := low(v).
end if
return v.

Output: the returned node is a node of the covering graph.

Algorithm 2 enumerate(r)

Input: r is the root of a given BDD．
ri := make intermadiate(r)
rp := ⊥
output and-apply(r, rp).
while rp ̸= ⊤ do

rp := replace(ri, rp)
rp = reduce(rp)
output rp

end while
Output: the output nodes are roots of a BDD representing a premise of a given BDD.

Our future work includes to calculate the time complexity more precisely and to evaluate our method
empirically. Besides, th We should decrease the time complexity of the worst case O(h2) by reconsidering
the order of enumeration.
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