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Abstract. Detecting anomalies from structured graph data is becoming
a critical task for many applications such as an analysis of disease infec-
tion in communities. To date, however, there exists no efficient method
that works on massive attributed graphs with millions of vertices for de-
tecting anomalous subgraphs with an abnormal distribution of vertex
attributes. Here we report that this task is efficiently solved using the
recent graph cut-based formulation. In particular, the full hierarchy of
anomalous subgraphs can be simultaneously obtained via the paramet-
ric flow algorithm, which allows us to introduce the size constraint on
anomalous subgraphs. We thoroughly examine the method using vari-
ous sizes of synthetic and real-world datasets and show that our method
is more than five orders of magnitude faster than the state-of-the-art
method and is more effective in detection of anomalous subgraphs.

1 Introduction

Anomaly detection is one of crucial tasks in data mining as anomalous objects
(outliers) causes serious problems across applications [1]. Despite recent devel-
opment of anomaly detection methods on multivariate datasets [5, 6, 25, 27] that
efficiently find sparsely populated objects, anomaly detection on structured data,
in particular on graphs, is still developing. The main difficulty is accounting for
inter-dependencies between objects to find anomalous regions in which objects
are connected to each other, which makes the task of anomaly detection on
graphs largely different from that on multi-dimensional feature vectors.

Rapid technological advances produce massive amount of attributed graphs,
where each vertex is associated with a label/attribute, and an anomalous sub-
graph corresponds to a densely connected region in which a distribution of at-
tributes is significantly different from the rest of the region. Moreover, in many
cases, such vertex attribute directly shows whether or not the vertex is anoma-
lous, that is, they can be used as partially supervised information of anomalous
subgraphs. Thus, in this situation, our task is to detect potentially (or hidden)
anomalous regions on the given graph structure using the attribute information
(see Figure 1). This task therefore corresponds to transductive learning [8] in the
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field of machine learning, where we aim at predicting labels of unlabeled data
in a given dataset. For example in an analysis of disease infection on a social
network, people are annotated as whether or not they are already infected and,
to understand the cause of disease infection and to find potentially infected peo-
ple, the goal is to detect an anomalous local community with the high rate of
infected people.

To date, several methods including the current state-of-the-art gAnomaly [18]
have been proposed that try to solve the above task of detecting anomalous sub-
graphs on attributed graphs. However, the following two problems remain un-
solved: (1) scalability; massive graphs with millions of vertices cannot be treated
in a reasonable time; (2) cardinality constraint; the size of anomalous subgraphs
cannot be specified by the user, which is an important requirement in real-world
applications. In gAnomaly, we have to rerun it many times by changing its pa-
rameter in small steps until reaching at a subgraph with the desirable size.

Our goal in this paper is to overcome the above two issues. The key technique
of our proposal is to use the recently proposed graph cut-based formulation [4],
where the method, called SConES, has been proposed and used for feature se-
lection on networks (weighted graphs). SConES uses the fact that the optimal
features correspond to the minimum cut on a given graph, and hence it can be
solved by a maximum flow algorithm in an efficient and exact manner. Although
the original SConES cannot directly handle the size constraint on the resulting
subgraph, we solve the problem by applying the parametric flow algorithm pro-
posed by Gallo et al. [11], which gives the entire regularization path along with
changes in a regularization parameter. Since the size of subgraphs depends on
the regularization parameter, we can pick up the best solution that fulfills the
size constraint from the set of possible solutions obtained by the parametric flow
algorithm.

This paper is organized as follows: Section 2 describes our method; we first
formulate our problem in 2.1 and introduce the cardinality constraint in 2.2,
followed by achieving ranking and visualization of anomalous subgraphs in 2.3.
Related work is discussed in Section 3, and our proposal is evaluated by exper-
iments in Section 4. We conclude the paper with summarizing our contribution
in Section 5.

2 Anomalous Subgraph Detection

Given an weighted graph G = (V,E), where V is a set of vertices and E is a
set of edges, and a weight w(e) is assigned to each edge e ∈ E. We consider the
situation in which the degree of anomalousness of each vertex is given through
an attribute function A from V , where its range, denoted by range(A), can be
either binary (range(A) = {0, 1}) or real-valued (range(A) = R). In the binary
case, a vertex v is anomalous if A(v) = 1 and is normal if A(v) = 0, while v is
more and more anomalous if A(v) gets a larger and larger value in the real-valued
case. In the following, we treat the graph G = (V,E) and an attribute function
A as a triplet G = (V,E,A) and call G an attributed graph. In this setting, the
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Fig. 1. Our problem setting. Open and filled circles denote normal and anomalous
vertices, respectively, given by attributes. Our goal is to find an anomalous subgraph,
denoted by a dotted line, where two normal vertices in the subgraph are potential
anomalies.

function A can be viewed as partial information of anomalies, and our objective
is to recover potentially anomalous regions from together with A and the given
network structure G. Notations used in the paper is summarized in Table 1.

One of the most direct mathematical formulation of this problem is as follows:
Find a subset S ⊂ V which maximizes the sum of values

∑
v∈S A(v) under two

constraints that the vertices in S of G are connected to each other by edges
and the cardinality |S| = k, which is specified by the user. Unfortunately, this
problem is infeasible to solve in practice because the maximum-weight connected
graph (MCG) problem:

max
S⊂V

∑
v∈S

A(v) such that G[S] is connected and |S| = k

is known to be strongly NP-complete [17] (G[S] denotes the subgraph of G
induced by S ⊂ V ). Thus, instead of tackling this hopeless problem, we focus on
local connectivity rather than conducting an exhaustive search over all connected
subgraphs. Our formulation, which is introduced in the next subsection, allows
the user to pick up more than one subgraph at the same time.

2.1 Formulation

To achieve our objective and find anomalous subgraphs, here we define the fol-
lowing problem based on the SConES formulation [4]: Given an attributed graph
G = (V,E,A), the anomalous subgraph finding problem is to find the optimal
subgraph G[S] induced by a subset S ⊂ V , which is the solution of

max
S⊂V

∑
v∈S

A(v)− λ
∑

e∈C(S)

w(e)− η |S|, (1)

where w(e) is the weight of the edge e,

C(S) = { {v, u} ∈ E | v ∈ V \ S, u ∈ S }
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Table 1. Notation.

G = (V,E,A) Attributed graph
V Set of vertices of G
E Set of edges of G
A Attribute function from V to {0, 1} or R
S Subset of V
G[S] Subgraph of G induced by S
v, u Vertex; v, u ∈ V
e Edge; e ∈ E
w(e) Weight of edge e
C(S) Cut set of S, i.e., C(S) = { {v, u} ∈ E | v ∈ V \ S, u ∈ S }
λ Parameter for connectivity
η Parameter for sparsity
n Number of vertices
m Number of edges
G′ = (V ′, E′) s-t graph constructed from G
k Size constraint (upper bound of the number of vertices of subgraph)
γ Parameter of parametric network
S1, S2, . . . , Sl Optimal solutions obtained by the parametric flow algorithm
q Scoring function from V to [0, 1]
i(v) Natural number such that v ̸∈ Si(v)−1 and v ∈ Si(v) for all v ∈ V

is the set of edges that have one of two endpoints in S (i.e., the cut set of S),
and λ and η are two real-valued regularization parameters. The first term is
for quantifying the anomalousness of a subgraph G[S], which coincides with the
cardinality of the set { v ∈ S | A(S) = 1 } in the binary case. The second and
third terms are penalties, where the second is to enforce the connectivity of S
as it penalizes selecting a vertex without selecting all of its neighbors, and the
third is to enforce the sparsity of the subgraph. Note that SConES has been
originally proposed for supervised feature selection on graphs, and we transfer it
into the problem of anomalous subgraph detection, where anomalous subgraphs
correspond to selected features.

The notable advantage of this formulation is that this is exactly and efficiently
solved by the maximum flow algorithm. For a graph G = (V,E,A), we construct
an s-t graph G′ = (V ′, E′) as follows: V ′ = V ∪ {s, t} by adding a source node
s and a sink node t, E′ = E ∪ { {u, v} | u ∈ {s, t}, v ∈ V }, and the capacity
c : E′ → R is given as

c({u, v}) =


A(v)− η if u = s and v ∈ V,

η −A(v) if u = t and v ∈ V,

λw({v, u}) if u, v ∈ V.

An example of transformation into an s-t graph is shown in Figure 2. For mathe-
matical convenience, a capacity of an edge can be negative in the above definition.
Such edges with negative capacities are ignored in the maximum flow algorithm.
We have the following powerful property for this s-t graph.
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Fig. 2. Example of a graph (left) and its corresponding s-t graph (right) for the maxi-
mum flow problem. Numbers in circles denote attribute values A(v) and those on edges
denote weights (left) and capacities (right). In this example, λ = 0.5 and η = 0.2.

Theorem 1 ([4]). Given an attributed graph G. Let (S∪{s}, V \S∪{t} ) be the
minimum s-t cut of the s-t graph G′. Then the set S coincides with the solution
of Problem (1) on G.

Since the s-t minimum cut problem is solved as a maximum flow problem, thanks
to the famous max-flow min-cut theorem [23, Chap. 6.1], the optimal subgraph
G[S] is exactly obtained by simply applying a maximum flow algorithm to the
transformed s-t graphG′, whose time complexity is O(nm log(n2/m)) [13], where
n = |V ′| and m = |E′|.

2.2 Parametric Flow on Anomalous Subgraphs

In Formulation (1), which is fundamentally the same as SConES, it is not in-
tuitive how to set two parameters, in particular η that controls the size of S.
However in anomalous subgraph detection, it is desirable to allow the user to
input the constraint on the size of subgraphs. Here we achieve this requirement
by solving the following modified problem:

max
S⊂V, η∈R

∑
v∈S

A(v)− λ
∑

e∈C(S)

w(e)− η |S|, (2)

subject to: |S| ≤ k,

where k is a natural number specified by the user.
Interestingly, we can obtain all possible minimum cuts simultaneously along

with changes of the parameter η without increasing the time complexity of the
maximum flow algorithm O(nm log(n2/m)). This is achieved by applying the
parametric flow algorithm presented by Gallo et al. [11]4 since the s-t graph G′

always becomes a parametric network.
A parametric network is a specific type of networks equipped with a real-

valued parameter γ satisfying the following three conditions:

4 This fact is pointed out in [26] but has not been used in any applications. A related
result is theoretically analyzed in [16].
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Algorithm 1 paraAnomaly

Input: Attributed graph G = (V,E,A), size constraint k, connectivity parameter λ
Output: Anomalous subgraph of G
1: Construct the s-t graph G′ from G
2: Apply the parametric flow algorithm to G′ and obtain the set of optimal solutions

S1, S2, . . . , Sl along with changes of the sparsity parameter η
3: Output G[Si], where |Si| ≤ k and |Si+1| > k

1. The capacity c({s, v}) is a non-decreasing function of γ for all v ∈ V \ {t}.
2. The capacity c({t, v}) is a non-increasing function of γ for all v ∈ V \ {s}.
3. The capacity c({u, v}) is constant for all u, v ∈ V with u ̸= s and v ̸= t.

From the definition of the s-t graph G′, we can easily confirm the following fact
by letting γ = −η.

Lemma 1. The s-t graph G′ is a parametric network with respect to (−η).

Notice that the weight w(e) of edges e ∈ E is used to construct the s-t graph
G′, while it is treated as a constant in the parametric network because it is
independent from η.

For a parametric network, it is known that the maximum flow value takes
a continuous piecewise linear function of γ = −η. Then there must be a finite
number of breakpoints γ1 < γ2 < · · · < γl−1, and for each interval [γi−1, γi),
the optimal solution Si does not change for any γ ∈ [γi−1, γi). Hence a finite
sequence of optimal solutions (subsets of vertices) S1, S2, . . . , Sl is produced by
the parametric flow algorithm, where l−1 is the number of breakpoints uniquely
determined from the property of a given graph.

Here an important property of the sequence of solutions is that they always
have the nesting property:

∅ ⊂ S1 ⊂ S2 ⊂ · · · ⊂ Sl−1 ⊂ Sl ⊂ V

with increasing the corresponding parameter values γ1, γ2, . . . , γl (i.e., decreasing
the parameter values η1, η2, . . . , ηl such that γi = −ηi). The optimal solution of
Problem (2) is therefore computed by simply choosing Si such that |Si| ≤ k and
|Si+1| > k. The entire process, which we call paraAnomaly, is summarized in
Algorithm 1.

2.3 Parametric Flow to Rank

The proposed method paraAnomaly can go one step further: It achieves not only
binary discrimination of anomalous subgraphs from the entire graph but also
ranking of anomalous subgraphs, which is often desirable in anomaly detection.
This is directly achieved from the hierarchical structure of the optimal solutions
S1 ⊂ S2 ⊂ · · · ⊂ Sl, that is, a smaller subgraph with a larger regularization
parameter η is more anomalous than a larger subgraph.
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Moreover, this ranking can be visualized by designing a scoring function for
vertices by focusing on the difference between consecutive subgraphs. Let us
denote by i(v) a natural number such that v ̸∈ Si(v)−1 and v ∈ Si(v) for any
vertices v ∈ V . Define a scoring function q : V → [0, 1] as

q(v) :=
l − i(v) + 1

l
,

where the numerator l− i(v)+1 is the number of solutions containing v and the
denominator l is the normalizer so that the resulting value q(v) ∈ [0, 1]. Then
vertices in a highly anomalous subgraph receives a higher score than those in
a low anomalous subgraph. This visualization reveals the hierarchical structure
of anomalous regions. We will show an example of visualization of a real-world
dataset in Section 4.

3 Related Work

Anomaly detection on graphs is roughly divided into two settings: on plain (un-
labeled) graphs and attributed (labeled) graphs. In this section we briefly discuss
related work about anomaly detection on graphs, mainly focusing on anomaly
detection on attributed graphs, and point out the difference between our method
and the existing methods. A comprehensive survey is given by [3].

On plain graphs, the objective is to detect regions that have rare structural
patterns. Various approaches have been proposed [2, 7, 14, 15, 19], for example,
Akoglu et al. [2] introduced the concept of an egonet, which is a subgraph with
its neighbors, and measured the abnormality of vertices by checking whether
their egonets obey some power-low extracted from real-world graph data.

Followed by studies on plain graphs, anomaly detection on attributed graphs
have been also heavily studied. Noble and Cook [22] were the first to investigate
anomaly detection on attributed graphs, where the Minimum Description Length
(MDL) principle was used to define abnormal substructures through measuring
the compression quality of frequent subgraphs. Eberle and Holder [10] tried to
define the degree of anomalousness based on the structure of subgraphs with
their attributes. Gao et al. [12] introduced community outliers, which signifi-
cantly deviate from the rest of the local community members, and proposed an
algorithm CODA to find them, but the algorithm strongly depends on the ini-
tialization step and the convergence is not guaranteed [3]. A node outlier ranking
technique GOutRank was proposed by Müller et al. [20], although it does not
aim at finding densely connected subgraphs. The concept of focused clustering
and outlier detection was introduced by Perozzi et al. [24], where only clusters
and outliers focused by the user through their exemplars are detected.

Despite the detailed studies of anomaly detection on attributed graphs, none
of the above methods aggressively treat attributes as supervision of anomalous-
ness. This means that their setting is basically unsupervised, and hence attributes
are not directly associated with the degree of anomalousness. In contrast, re-
cently, Li et al. [18] have considered the transductive setting and tried to recover
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anomalous subgraphs from partially labeled vertices by estimating probability
distributions of anomalous attributes by the EM algorithm. This is the problem
setting that we are considering in this paper, and their method, called gAnomaly,
is compared to our proposed method paraAnomaly in the next section as it is
the current state-of-the-art.

Clustering techniques on attributed graphs, which do not focus on detecting
anomalies, can be used for anomaly detection since the task of anomaly detection
can be achieved by dividing the whole vertices into two clusters of normal and
abnormal vertices. A representative method GBAGC [29] is also compared to
our method in our experiments.

4 Experiments

In this section, we examine our method paraAnomaly on synthetic and real-
world graph datasets. First we describe our experimental setting, followed by
discussing the results.

4.1 Experimental Methods

Environment. We used Mac OS X version 10.9.4 with a 3.5 GHz Intel Core
i7 CPU and 32 GB of memory. Our method paraAnomaly is implemented in R,
version 3.1.1, which calls the parametric flow algorithm5 written in C++ and
compiled by gcc version 4.9.0.

Comparison partners. Our main comparison partner is the state-of-the-art
method gAnomaly [18]. We re-implemented gAnomaly in R since the official code
is not available. Note that the most expensive optimization part of gAnomaly is
done by an R function optim, in which the core part is implemented in C. Thus
comparison of running time between paraAnomaly and gAnomaly is fair. The

function R
(2)
N (see [18, Equation (3.7)] for its definition) was used as a network

regularizer because the author claims that it is more robust to the parameter

setting than the other regularize R
(1)
N .

In addition, a clustering method GBAGC is also included as a comparison
partner because it is used as the solo comparison partner of gAnomaly in [18].
The official implementation6 was used.

Datasets. We generated various sizes of attributed graph datasets in the follow-
ing manner: First, we generated graphs according to the Watts-Strogatz network

5 Source code is available at http://research.microsoft.com/en-us/downloads/

d3adb5f7-49ea-4170-abde-ea0206b25de2/. Since the code can handle only inte-
gers for parameters, we first transform every parameter to an integer by multiplying
some constant value.

6 http://www.cais.ntu.edu.sg/~chi/software.html
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model [28] using the R igraph package. Second, we took the largest dense sub-
graph using a method proposed by Clauset et al. [9] and assumed that this
community is an anomalous subgraph, that is, a vertex is labeled as 1 if it is
in the subgraph and 0 otherwise. Although our method can handle real-valued
attributes, we systematically examine only the binary case as gAnomaly cannot
treat real-valued attributes.

We used three real-world datasets: CORA7, DBLP, and Amazon. DBLP and
Amazon were obtained from SNAP8. In CORA, we used the largest cluster
“Neural Networks” as an anomalous subgraph, which is the same protocol as
in [18]. In DBLP and Amazon, we chose the largest community given by [30] and
assigned it as anomalous. Moreover, we used a small subset of DBLP (denoted
as DBLP(s)) by taking the four largest communities. Statistics of datasets are
summarized in Table 2.

Evaluation. To investigate the performance of detection methods, in each syn-
thetic and real-world graph dataset, we randomly chose 20 % of vertices from
the anomalous subgraph and assigned the label 0 to them. Hence the task is
to recover those hidden anomalous vertices from the rest of 80 % anomalous
vertices. Precision and recall were computed, and the F-measure was also com-
puted from them to summarize the performance. In addition, we used the gain
of the modularity [21] to evaluate the goodness of division of resulting subgraphs
without label information. We report the mean and the standard deviation of
these values in 20 repeats in every case.

4.2 Results and Discussion

Efficiency. First we examine the efficiency using synthetic datasets. Figure 3
shows results of running time of each method with respect to the number of
vertices. The number of edges are fixed as twice the number of vertices. We
could not finish GBAGC when the number of vertices is larger than 105 as it
run out of memory. This means that GBAGC cannot treat large graphs, although
such graphs are now emerging and needed to be analyzed.

We can clearly see that paraAnomaly is much faster than gAnomaly, and it is
the only method that can be applied to large graphs with more than 105 vertices
in a reasonable time. The running time scales sub-quadratically with the number
of vertices in paraAnomaly, while quadratically in gAnomaly. In real datasets in
Table 3, our method is also the fastest and more than five orders of magnitude
faster than gAnomaly. We can therefore say that paraAnomaly is the first method
that can handle massive graphs with millions of vertices in detecting anomalous
subgraphs.

Sensitivity. Next we analyze the sensitivity of our method with respect to
changes in the parameter λ. Since gAnomaly also has a regularization parameter

7 http://www.cs.umd.edu/~sen/lbc-proj/LBC.html
8 http://snap.stanford.edu/index.html
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Fig. 3. Running time (seconds). GBAGC run out of memory and broke down when
the number of vertices is larger than 105.

λ, we also analyze the sensitivity of gAnomaly and compare it to our method. We
used synthetic graphs of 1000 vertices and 2000 edges. We also applied GBAGC
to synthetic data, but it could not find any anomalous subgraph in any setting,
i.e., all vertices are always in the same cluster. The reason might be that their
framework is too sensitive to labels of neighbors and cannot handle our setting.

Results are plotted in Figure 4. These plots show that our method is robust
to changes in the parameter λ if it is smaller than 1, and is not stable if it gets
larger than 1. This is why the penalty with respect to the connectivity is too
strong, resulting in choosing too small anomalous subgraphs if λ is large. Thus
both precision and recall become low values while the modularity increases. If
λ is sufficiently small (around 0.1), the performance of paraAnomaly in terms
of both the F-measure and the modularity is always better than gAnomaly. In
addition, if λ = 0, precision stays high while recall gets lower again. The reason
is that, in such a case, there is no regularization and the method just picks up
all given 80 % of vertices and does not pick up any hidden anomalous vertices.
To summarize, these results indicate that we do not need to be carefully tune
the parameter λ and just set to a small value. In the following, we always set
λ = 0.01 in paraAnomaly.

In gAnomaly, if the parameter λ is small (from 0.01 to 1), it cannot regularize
the detection, that is, it just chooses vertices labeled as anomalous like the case
of λ = 0 in paraAnomaly. But once λ gets larger than 1, regularization effect
becomes suddenly too strong and the performance gets worse in terms of both
the F-measure and the modularity. When λ is larger than 30, it did not find any
anomalous subgraph. This result indicates that in practice it is not easy to find
a good setting of λ. In the following, we always set λ = 1 in gAnomaly.
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Fig. 4. Performance with respect to changes in regularization parameter λ.

Effectiveness. We investigate the performance on various sizes of synthetic
graphs and real-world graphs. Results on synthetic data are shown in Figure 5
and those on real data are in Table 3.

In synthetic data, we can see that our method paraAnomaly is always supe-
rior to gAnomaly in terms of both the F-measure and the modularity on every
data size. In real data, paraAnomaly shows the best scores on all datasets in
the F-measure, while gAnomaly is the best in the modularity. However, note
that gAnomaly is not scalable and takes more than five orders of magnitude
slower than paraAnomaly, thereby we could not finish gAnomaly on Amazon
and DBLP. The clustering method GBAGC shows the worst score on every
dataset. From those results, we can again confirm that our paraAnomaly is the
only method that can efficiently and effectively find anomalous subgraphs from
large scale graph data.

Visualization. Finally, we demonstrate visualization on the CORA dataset.
The original anomalous vertices, corresponds to the cluster “Neural Networks”,
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Fig. 5. Performance on synthetic data.

are shown in Figure 6 and the resulting visualization by paraAnomaly is shown
in Figure 7. Here we can confirm that vertices that are close to (i.e., densely
connected to) anomalous vertices are claimed to be anomalous according to
their anomalous scores. Thus, by our method paraAnomaly, one can visualize
interesting anomalous communities from the given attributed graphs, which are
simultaneously ranked according to their degree of anomalousness.

5 Conclusion

In this paper we have presented a scalable method paraAnomaly, which de-
tects anomalous subgraphs from attributed graphs. This method is based on the
SConES formulation [4], thereby it is exactly and efficiently solved by the max-
imum flow algorithms through a minimum cut reformulation. Moreover, using
the parametric flow algorithm [11], we have achieved to introduce the cardinality
constraint, that is, the user can specify the desirable number of vertices. Exper-
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Table 2. Statistics of real-world datasets. In the table, “Ratio” denotes the ratio of
the number of anomalous vertices in each graph.

Data |V | |E| Average degree Ratio

CORA 2708 5429 4.010 0.302
DBLP(s) 3194 8714 5.456 0.202
Amazon 334863 925872 5.530 0.160
DBLP 317080 1049866 6.622 0.024

Table 3. Results on real-world datasets. In the table, “paraAno” and “gAno” denote
paraAnomaly and gAnomaly, respectively.

Data Precision Recall F-measure
paraAno gAno GBAGC paraAno gAno GBAGC paraAno gAno GBAGC

CORA 0.969 0.977 0.20 0.867 0.822 0.078 0.915 0.892 0.112
DBLP(s) 0.955 0.918 0.16 0.858 0.670 0.108 0.904 0.775 0.129
Amazon 0.951 — — 0.951 — — 0.951 — —
DBLP 0.868 — — 0.828 — — 0.848 — —

Data Gain of modularity Runtime (s)
paraAno gAno GBAGC paraAno gAno GBAGC

CORA 0.062 0.107 −0.272 0.124 32861.436 0.358
DBLP(s) 0.059 0.085 −0.031 0.171 39450.032 0.279
Amazon 0.078 — — 26.649 — —
DBLP 0.011 — — 48.626 — —

iments have shown that our method is much faster than the state-of-the-art
method gAnomaly and is more effective on synthetic and real graph datasets.

Currently, paraAnomaly can handle only one-dimensional attributes, while
some methods including GBAGC can use multi-dimensional attributes. Thus
extending our formulation to multi-dimensional attributes, that is, how to design
the attribute function A, is an interesting future work.
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of attributed graphs. In: ICDE Workshop. pp. 216–222 (2013)

21. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in net-
works. Physical review E 69(2), 026113 (2004)

22. Noble, C.C., Cook, D.J.: Graph-based anomaly detection. In: Proceedings of the
9th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. pp. 631–636 (2003)

23. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and
Complexity. Dover (1998)

24. Perozzi, B., Akoglu, L. Sánchez, P.I., Müller, E.: Focused clustering and outlier
detection in large attributed graphs. In: Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (2014)

25. Pham, N., Pagh, R.: A near-linear time approximation algorithm for angle-based
outlier detection in high-dimensional data. In: Proceedings of the 18th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining. pp. 877–885
(2012)

26. Sugiyama, M., Azencott, C.A., Grimm, D., Kawahara, Y., Borgwardt, K.M.: Multi-
task feature selection on multiple networks via maximum flows. In: Proceedings of
SIAM International Conference on Data Mining (SDM). pp. 199–207 (2014)

27. Sugiyama, M., Borgwardt, K.M.: Rapid distance-based outlier detection via sam-
pling. In: Advances in Neural Information Processing Systems. pp. 467–475 (2013)

28. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature
393(6684), 440–442 (1998)

29. Xu, Z., Ke, Y., Wang, Y., Cheng, H., Cheng, J.: GBAGC: A general Bayesian
framework for attributed graph clustering. ACM Transactions on Knowledge Dis-
covery from Data 9(1), 5:1–5:43 (2014)

30. Yang, J., Leskovec, J.: Defining and evaluating network communities based on
ground-truth. In: Proceedings of the 2012 IEEE International Conference on Data
Mining (ICDM). pp. 745–754 (2012)


