
Binary Classification Using Fast Gaussian
Filtering Algorithm

Kentaro Imajo, Keisuke Otaki, and Akihiro Yamamoto

Graduate School of Informatics, Kyoto University
Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan.

{imajo,ootaki}@iip.ist.i.kyoto-u.ac.jp,akihiro@i.kyoto-u.ac.jp

Abstract. We propose a new algorithm for binary classification based
on the Fast Gaussian Filtering Algorithm (FGFA), which can compute
Gaussian-filtered values fast in low-dimensional spaces. It is originally de-
veloped for dense data like images. Extending the algorithm with range
trees to deal with sparse data, we propose a new classifier. We show that
the classifier is the same as a C-SVM whose parameter C approaches 0.
We give experimental results to show that our classifier has as good ac-
curacy as C-SVMs, and we can reduce computational time of predictions
of C-SVMs when the number of suppor vectors is larger than 10,000.

Keywords: Binary classification, Support vector machines, Gaussian
filtering, Gaussian function

1 Introduction

In this paper, we propose a new algorithm for binary classification tasks based
on the Fast Gaussian Filtering Algorithm (FGFA) proposed by Imajo [1]. We
also give experimental results for evaluating our algorithm.

It is well-known that SVMs have reputations for outperforming other meth-
ods [2, 3]. The basic idea of SVMs is to maximize margins between two classes
using quadratic programming problems, and they can predict a class of an un-
seen sample based on hyperplanes that are constructed with the answer of a
quadratic programming problem. In applications of SVMs like the case of LIB-
SVM [4], however, the computational time for each prediction gets longer than
linear time of the number of training samples. Thus, we need to decrease the cost
if we use a lot of support vectors for classification. This is our motive of adopting
approximate computations for classification. By FGFA [1], we can speed up the
computation of the Gaussian filtering for low-dimensional dense data such as
image data. We extends FGFA using the range trees [5] in order to apply FGFA
to sparse data. Our classifier is constructed by the extended FGFA. In addition,
we show that our method can be regarded as C-SVMs, which are known as
soft-margin SVMs, whose parameter C approaches 0.

Section 2 shows preliminaries, and Section 3 gives our algorithm. Section 4
compares our algorithm with C-SVMs. Section 5 evaluates our algorithm by
accuracy and computational time comparing with LIBSVM, which implements
C-SVMs. Finally, we conclude our study in Section 6.

2 Binary Classification Using Fast Gaussian Filtering Algorithm

2 Preliminaries

2.1 FGFA (Fast Gaussian Filtering Algorithm)

We proposed FGFA in the last paper [1]. The paper revealed that we can compute
a Gaussian-filtered value fast also in low-dimensional sparse spaces. In this paper,
we use the second-order approximation of the Gaussian function:

ψ̃(x) = 3(x+ 11)2+ − 11(x+ 3)2+ + 11(x− 3)2+ − 3(x− 11)2+, (1)

' ψ(x) = 2.657 × 102 exp
(
− x2

5.27202

)
, (2)

where (·)+ ≡ max(0, ·). The approximation error of the second-order approxi-
mation is about 2%, which is calculated as follows:∫

R

∣∣∣ψ(x) − ψ̃(x)
∣∣∣ dx∫

R |ψ(x)| dx
≈ 0.02009. (3)

Let ψ be the Gaussian function and I be a 2D image, a Gaussian-filtered
value (ψ ∗ I)(x, y) at the pixel (x, y) can be written as:

(ψ ∗ I)(x, y) =
∑

(∆x,∆y)∈Z2

ψ(∆x,∆y)I(x−∆x, y −∆y). (4)

The proposed method by Imajo [1] for speeding up the calculation of Equation 4
is represented as follows:

(ψ ∗ I)(x, y) '
m∑

i=1

m∑
j=1

aiajJ(x+ bi, y + bj), (5)

where a = {3,−11, 11,−3}, b = {11, 3,−3,−11}, m = 4, and J(x, y) is calcu-
lated by precomputation represented as follows:

J(x, y) =
∑

(∆x,∆y)∈{(0,0),···,(x,y)}

∆x2∆y2I(x−∆x, y −∆y). (6)

Thus, the second-order approximation takes O(n log d)-time for precomputa-
tion, and it takes O(4d)-time for computation of a Gaussian-filtered value, where
n is the number of pixels, and d is a dimension.

2.2 d-dimensional Range Queries

In this paper, we use range trees [5] to process d-dimensional range queries such
as summation of values in a d-dimensional rectangular area. A d-dimensional
range tree can be constructed in O(n logd n) time, where n is the number of
points stored in the tree, and every d-dimensional range query can be processed
in O(logd n) time.

Binary Classification Using Fast Gaussian Filtering Algorithm 3

3 FGFA for Sparse Data

FGFA assumes that an input data consists of dense data such as an image. The
precomputation of FGFA takes linear time on the number of pixels of an input
image. If we deal with continuous values for coordinates as is, a large number
of pixels are required to approximate. Therefore, this section extends the d-
dimensional range query algorithm to calculate integrated values of sparse data,
and it applies the extension to FGFA.

3.1 Extension of d-dimensional Range Tree

The d-dimensional range tree algorithm provides a method to calculate sum-
mation of a rectangular area of d-dimensional spaces. Using the method, this
section shows a method to calculate J in Equation 6. The d-dimensional range
tree algorithm can compute a value Ki,j(x, y) in O(logd n)-time that is written
as:

Ki,j(x, y) =
∑

(∆x,∆y)∈{(0,0),···,(x,y)}

∆xi∆yjI(∆x,∆y). (7)

Using the values K, J can be rewritten as:

J(x, y) =

 x2

−2x
1

 y2

−2y
1

TK0,0(x, y) K1,0(x, y) K2,0(x, y)
K0,1(x, y) K1,1(x, y) K2,1(x, y)
K0,2(x, y) K1,2(x, y) K2,2(x, y)

 . (8)

Therefore, J can be computed in O(log2d n) time.

3.2 Extension of FGFA

Since the extension of d-dimensional range tree offers a method to calculate J in
O(log2d n) time, we reveal that FGFA can be computed in O(4d log2d n) time.

3.3 Proposed Classifier

Using the extension of FGFA, the proposed classifier approximates the following
function ytest for binary classification:

ytest = sgn

(
n∑

i=1

yi exp

(
−|xtest − xi|2

σ2

))
. (9)

4 Binary Classification Using Fast Gaussian Filtering Algorithm

4 Similarities With C-SVM

We show that the proposed algorithm is the same classifier as a C-SVM [2] with
the Gaussian kernel whose parameter C approaches +0. C-SVMs with the Gaus-
sian kernel can be constructed by solving the following quadratic programming
problem.

max :
n∑

i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyj exp

(
−|xi − xj |2

σ2

)
, (10)

s.t. : 0 ≤ αi ≤ C (i = 1, · · · , n),
n∑

i=1

αiyi = 0,

where xi is a vector of parameters, yi is a class for xi, C and σ are predefined
parameters of a C-SVM and αi is a variable. If C approaches +0, the first term
of Equation 10 can be ignored. We can maximize Equation 10 by αi = C if
two classes have the same number. Therefore, we can consider the proposed
algorithm a C-SVM whose parameter C approaches +0.

5 Experiments

In this paper, we evaluate the proposed method comparing with a popular C-
SVM software LIBSVM [4]. First, we compare accuracy of classification. Second,
we compare computational time of prediction. The proposed method is imple-
mented by C++ language, and we compute experiments of this section on a
computer that installs Core i7 2.8GHz, 16 GB memory, Mac OS X 10.7 and
G++ 4.2.

5.1 Comparison of Accuracy

We evaluate the proposed method comparing accuracy of classification of the
Iris flower data set [6] with C-SVMs. Since the data set has three classes and we
want to evaluate binary classification, we use two classes Versicolor and Virginica
in the Iris flower data set. Both of the proposed method and C-SVMs require
a parameter σ, and C-SVMs require another parameter C. We evaluated them
for each of C ∈ {0.1, 1, 10, 106}, σ ∈ {0.1, 0.3, 1, 3, 10}. Table 1 is the result
of 5-fold cross-validation.

5.2 Comparison of Computational Time

We evaluate the proposed method comparing computational time of prediction
with LIBSVM. Training data consist of random real numbers between 0 and 10.
Since the proposed method requires integer attributes, we round off a fraction
to three decimal places. Table 2 shows that computational time to predict of the
proposed method is less linear on the number of training data while LIBSVM

Binary Classification Using Fast Gaussian Filtering Algorithm 5

Table 1. Accuracy of classification of the Iris flower data set

(Classification between two species with 5-fold cross validation)

Proposed C-SVM

Method C = 0.1 C = 1 C = 10 C = 106

σ = 0.1 93% 58% 68% 69% 69%

σ = 0.3 93% 83% 94% 93% 93%

σ = 1 93% 93% 95% 93% 92%

σ = 3 86% 90% 94% 95% 89%

σ = 10 84% 85% 90% 93% 92%

Table 2. Computational time to predict a class

(Every vector has two real numbers between 0 and 10, σ is 1)

of training data 1, 000 10, 000 100, 000 1, 000, 000

Proposed Prediction 2.43 ms 2.48 ms 2.55 ms 2.96 ms

method (Precomputation) (0.13 s) (1.48 s) (17.8 s) (203 s)

LIBSVM
Prediction 0.02 ms 0.22 ms 2.29 ms 23.6 ms
(Training) (0.05 s) (4.47 s) (442 s) (1000+ s)

predicts a class by calculating all the distances between a target and training
data. Precomputation of the proposed method takes nearly linear on the number
of training data. Training of LIBSVM takes time that is nearly proportional to
the square of the number of training data.

6 Conclusions

This paper showed that FGFA can be applied to sparse data using the d-
dimensional range tree algorithm. This is the same classification as a C-SVM
whose parameter C approaches 0, and it has as good accuracy as C-SVMs. Ad-
ditionally, we revealed that this can reduce time of prediction of C-SVMs when
the number of support vectors is larger than 10,000.

References

1. Kentaro Imajo. Fast Gaussian Filtering Algorithm Using Splines. In The 21st
International Conference on Pattern Recognition, 2012.

2. Koji Tsuda. Overview of Support Vector Machine. The Journal of the Institute of
Electronics, Information, and Communication Engineers, 83(6):460–466, 2000.

3. Christopher M. Bishop. Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer-Verlag New York, Inc., 2006.

4. Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A Library for Support Vector
Machines. ACM Transactions on Intelligent Systems and Technology, 2(3):27, 2011.

5. Jon Louis Bentley. Decomposable Searching Problems. Information Processing
Letters, 8(5):244–251, 1979.

6. R.A. Fisher. The Use of Multiple Measurements in Taxonomic Problems. Annals
of Human Genetics, 7(2):179–188, 1936.

