
Preserving Privacy with Dummy Data
in Set Operations on Itemsets

Keisuke Otaki and Akihiro Yamamoto

Graduate School of Informatics, Kyoto University
Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan.

ootaki@iip.ist.i.kyoto-u.ac.jp, akihiro@i.kyoto-u.ac.jp

Abstract. Privacy-Preserving Data Mining is one of growth fields in Knowledge
Discovery. Our goal is to give a foundation of preserving privacy in frequent
itemset mining. In this paper, we propose a method for preserving privacy in set
operations on itemsets, because the process of itemset mining can be represented
with set operations. Our idea is to insert dummy data into original. By implement-
ing our method with ZDDs, we show experimental results to see that our method
provides undistinguishability of dummy data.

Keywords: Privacy-preserving data mining, Dummy data, Zero-suppressed bdds

1 Introduction

In this paper, we propose a method of preserving privacy in set operations. Our goal
is to give a foundation of privacy-preserving in frequent itemset mining. It is often the
case that data are stored in several partitioned places called sites, and in the situation,
we have to solve the problem of preserving privacy. Kantarcioglu et al. [6] investigated
privacy preserving itemset mining when a database is horizontally partitioned, that is,
the disjoint union of partitioned databases. A method for decreasing communication
cost by using closed itemset was proposed by Lucchese et al. [8], and the previous two
methods were amalgamated by Kuno et al. [7]. Our research is based on our observation
that the process of itemset mining can be represented with set operations.

Our method inserts dummy data into original one, and extracts expected results after
applying set operations, which is described in Section 2. We show that the methods work
correctly for the set intersection and the set union.

In Section 3, we show that the method preserves privacy in the sense of undistin-
guishability experimentally. It would be obvious that inserting dummy data prevents
efficient mining. In the experimental evaluation we use ZDDs (Zero-suppressed Deci-
sion Diagrams) [9] in order to avoid the lost of efficiency.

2 Inserting Dummy Data for Set Operations

We basically adopt a typical definition of itemset mining provided by Agrawal et al. [1]
and basic definitions on distributed databases from Kantarcioglu et al. [6].

2

For simple discussion, we assume that an item to be a natural number, and represent
a subset {m,m + 1, . . . , n} as an interval [m, n] where m < n. An itemset is a finite
set of items, and a database DB is a finite set of itemsets. If ∀X ∈ DB X ⊆ [m,n],
we say that DB is on [m,n]. We fix an interval I = [1, R] and consider the case that
two databases DB1 and DB2 on I are stored in two sites S1 and S2, respectively. In
such a case, we say that DB = DB1 ∪ DB2 is horizontally partitioned. The discus-
sion for this simple case could be extended to that for the cases when more than three
databases should be treated. Itemset mining is to find all frequent itemsets from the
database DB. In the literature [7, 11], this process can be represented with some set
operations mainly. In the following, we provide a method for preserving privacy with
respect to a set operation DB1 op DB2.

We prepare two parameters γ ≥ 1 and M ≥ R+γ+1 for our method. We extend the
interval I to Ĩ = [1,M] and call it the expanded interval. We define shiftγ(i) = i + γ
for any item i, shiftγ(X) = {shiftγ(i) | i ∈ X} for any itemset X , and shiftγ(DB) =
{shiftγ(X) | X ∈ DB} for any database DB. A dummy database is a database on
[m,n] and every element in it is generated randomly where m < γ, R + γ < n. The
method consists of three phases:

1. Pre-processing: By applying shiftγ to every item, we obtain DB′
i = shiftγ(DBi),

which are on [1 + γ, R + γ]. No original item is in [1, γ] and [R + γ + 1, M].
We merge a dummy database Di with DB′

i by applying a mixing function p, and
obtain a database denoted by p(DB′

i, Di), i = 1, 2. Each of the two sites S1 and
S2 chooses the dummy data arbitrarily and independently.

2. Main Operation: The two sites execute a set operation op to p(DB′
1, D1) and

p(DB′
2, D2). The output p(DB′

1, D1) op p(DB′
2, D2) includes itemsets both from

the original databases and from dummy databases.
3. Post-processing: Delete itemsets from dummy databases in the results with a screen-

ing function e which transforms a database on [1,M] to a database on [1+γ, R+γ]
and obtain e{p(DB′

1, D1) op p(DB′
2, D2)}. By applying shift−γ to the result we

obtain the final result as a database on I.

An example of mixing function is the set union ∪, and an example of screening
function is the id which is the identify function. In general, we can use some functions
as mixing functions and should make dummy databases using all range of [1,M] for
concealing original data. In such cases, we should have more complex post-processing
like using difference (A − B) or intersection (A ∩ B) between sets.

The pair of p = ∪ as the mixing function and e = id as the screening function work
correctly when we choose dummy database carefully. We divide the expanded interval
[1, M] into three intervals L,N,H , where [1,M] = L ∪ N ∪ H, L = [1, γ], N =
[1+γ,R+γ] and H = [R+γ +1, M]. Consider the case that Di = DLi∪DHi where
DLi means a dummy data on L and DHi means a dummy data on H for Si. We assume
that DL1 ∩ DL2 = ∅ and DH1 ∩ DH2 = ∅ hold, then the next proposition shows that
the pair of (p, e) = (∪, id) works correctly for the set operation ∩.

Proposition 1. It holds that id{(DB′
1 ∪ (DL1 ∪ DH1)) ∩ (DB′

2 ∪ (DL2 ∪ DH2))} =
shiftγ(DB1 ∩ DB2).

3

(a) (b) (c)

Fig. 1. Example of a horizontally partitioned distributed databases and its ZDD representation.
ZDD(c) shows DB2.

The proposition is proved as follows:

id{(DB′
1 ∪ DL1 ∪ DH1) ∩ (DB′

2 ∪ DL2 ∪ DH2)}
= (DB′

1 ∪ DL1 ∪ DH1) ∩ (DB′
2 ∪ DL2 ∪ DH2)

= (DB′
1 ∩ DB′

2) ∪ {DB′
1 ∩ (DL2 ∪ DH2)

∪{DB′
2 ∩ (DL1 ∪ DH1)} ∪ {(DL1 ∪ DH1) ∩ (DL2 ∪ DH2)}

= DB′
1 ∩ DB′

2 = shiftγ(DB1 ∩ DB2).

For the case op = ∪, we need another screening function choice to keep choice{(DB′
1∪

(DL1∪DH1))∪(DB′
2∪(DL2∪DH2))} = DB′

1∪DB′
2. The screening function choice

should choose the items came from original interval I .

3 Implementation and Experimental Result

3.1 Representation Databases with ZDDs

We show some experimental results and execution on ZDDs invented Minato [9]. We il-
lustrate an example of distributed databases on I = {a, b, c, d} in Fig. 1(a) and Fig. 1(b)
shows its binary table representation where DB = DB1 ∪DB2. For representing such
kind of transaction databases, we adopt ZDDs in the present paper.

A ZDD is a BDD-based directed acyclic graph [9], which can represent itemsets
compactly. The ZDD has only one source node and two sink nodes represented by
square nodes labeled with 0 and 1 in Fig. 1(c). Each circle node represents an item and
all items are ordered in each path from source to sink like b < c < d. Each node has two
edges. The edge denoted by dotted edge is 0-edge and the edge denoted by solid edge is
1-edge. The 1-edge corresponds to a possession of the item. In contrast to FP-tree [5],
ZDDs do not have the header table for managing the connection between nodes with
same variables. This fact shows that the FP-tree is element oriented representation.
In contrast, ZDDs are itemsets oriented representation and we can represent a set of
itemsets by only one ZDD using some nodes and edges like Fig. 1(c) which shows
DB2 in Fig. 1. In ZDDs, the path from source to sink corresponds to an itemset.

We can also represent a ZDD by a list of tuples (v, p0, p1) where v means the
boolean variable, p0 means the 0-edge, and p1 means the 1-edge. The ZDDs are trans-
formed and represented compactly by applying reduction rules as follow:

4

Fig. 2. Example of correspondence between a ZDD and a node table

– If the 1-edge is directly connected to 0, then we remove the node, and
– if (v, p0, p1) is isomorphic to (v′, p′0, p

′
1), then we merge them into one.

The operations of ZDDs are executed by using the list of tuples which correspond
to nodes [10]. For evaluating our method, we have to construct criteria for expression
on ZDDs on the assumption that we execute some distributed operation of ZDDs by
communicating the list of tuples among sites.

3.2 Undistinguishability and Well-mixedness

Well-known generic ZDD interpreters have a node table which stores information of
ZDDs as a list of tuples. We show an example of the correspondence between a node
table and a ZDD in Fig. 2. We classify nodes on ZDDs into three types. First is Single
whose both edges does not connect to constant nodes. Second is Semi-single, either
of edges connects to a constant node. Third is Complex which are neither single nor
semi-single.

Since our method mainly depends on the mixing function and the dummy data, we
check the number of inserted data. This causes us to define our original criterion for
evaluating this insertion like p-indistinguishability [2]. The main idea is if there are
sufficient dummy data for concealing original data, then we cannot identify original
data. On the basis of this idea, we count the number of nodes for checking the ratio.
Our criterion is defined as below.

Definition 1 (Well-mixed on ZDDs). A pair of a dummy database and an original
database is well-mixed if the number of nodes from the dummy database is more than
or equal to the number of nodes from the original database in the given ZDD. If a ZDD
made of such a pair, we say that the ZDD has undistinguishability.

Let N(D) denote the set of all nodes from the dummy database, and N(DB) denote
those from the original database where N is a function that takes a database and returns
the set of nodes made from the database. We evaluate whether or not the database is
well-mixed, by checking |N(DB)| < |N(D)|. If this inequation holds, we interpret
that the pair of the dummy database and the original database is well-mixed according
to the above definition. This means that we can bound the number of nodes from the
original database by the number of nodes from the dummy database on the node table
because on the node table, the set operations via ZDDs correspond to the function which
gets two integers pointing input nodes and returns the answer node as an pointer.

5

Table 1. The result for mushroom on operation ∪

(a) for the operation ∪ – (M1)
label single semi-single complex total

0 3 4302 1432 5737
1 59 1706 2963 4728
2 0 323 354 677

(b) for the operation ∪ – (M2)
label single semi-single complex total

0 3 4302 1432 5737
1 71 3436 7034 10541
2 0 323 562 885

3.3 Estimation and Experiments

We make our experiments with JDD 1 as the generic ZDD interpreter that is imple-
mented in Java. The experiments were done on the machine whose OS is Mac OS X
10.6(Snow Leopard), CPU is Intel Core i5 2.8GHz, and main memory is 12GB. We
use mushroom of FIMI dataset2. The setting of mushroom database is as follow. Three
intervals are L = [1, 100], N = [101, 220] and H = [221, 350]. We make two sets DL1

and DL2 of dummy databases, and also DH1 and DH2. We use the ∪ for the mixing
function p, and require that DL1 ∩ DL2 = ∅, and that DH1 ∩ DH2 = ∅. The size of
each databases are 100.

Results and Discussion Table 1 shows the results on the picked up databases from
mushroom with M1 and M2, where M1 means that we use one dummy database and let
DB′

i = DBi ∪ DLi ∪ DHi. For comparison, M2 is the case that we use two dummy
databases, and let DB′

i = DBi ∪ DLi ∪ DLi′ ∪ DHi ∪ DHi′ .
On Table 1(a) and (b), we cannot bound the number of nodes labeled with 0 by the

number of nodes labeled with 1 as to semi-single nodes. We need more dummy data for
bounding the number of semi-single nodes, but we can bound the number of single and
complex ones by the number of nodes labeled with 1. We can interpret this as follows:
For satisfying undistinguishability, we should adjust the size of dummy data and the
ratio among three types of nodes.

We conclude that we can construct the dummy data for concealing the original data
to satisfy undistinguishability if we prepare sufficient and adequate dummy data. We
should execute more various kinds of experiments and consider the variation of mixing
functions and screening functions. We also need more consideration about our criterion
and domain of dummy data for preserving privacy.

4 Conclusion and Future Works

We propose the basic idea of inserting dummy data for preserving privacy to execute set
operations. As a simple experiment, we assume that databases are expressed in ZDDs,
and we construct dummy data and mix them in the form of ZDDs.

1 http://javaddlib.sourceforge.net/jdd/
2 http://fimi.cs.helsinki.fi/data/

6

In the area of privacy preserving data mining, two aspects are discussed. The first
one is data anonymization for concealing and publishing privacy information about in-
dividuals. This field provides us some criteria like k-anonymity [3] and how we publish
data to public without valuable data. The second is a field of Secure Computation like
SMC [4]. This area provide us how we compute some fundamental functions privately
for data mining. For example, how to privately calculate basic arithmetic, logarithm or
dot product includes.

The method by Kantarcioglu et al. [6] is based on SMC. In contrast, our method is
based on inserting dummy data. This method would be superior to SMC based meth-
ods with respect to computational cost. In the present situation, the computational cost
of SMC is expected to be prohibitive. On anonymization, we could not estimate our
method because of the following reasons. First, we could not expect what kinds of
itemsets happens by inserting random dummy data. Second, we could not also forecast
how merging and removing occurs on the expressions of ZDDs.

For the future work, we could improve our estimating method based on the node
table, and revise the criteria on well-mixed based on the undistinguishability. Sufficient
size of dummy data will be needed for concealing original data. Also, if dummy data
comes from completely different domain, it may be removed by statistical or a large
number of attacks for peeping private information. So we have to develop the ways of
making dummy data based on probabilistic distribution and proceed more experiments.

References

[1] Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules in Large Databases.
In: Proceedings of International Conference on Very Large Data Bases, 1994. pp. 487–499
(1994)

[2] Clifton, C., Kantarcioglu, M., Vaidya, J.: Defining Privacy for Data Mining. In: Proceedings
of National Science Foundation Workshop on Next Generation Data Mining. pp. 126–133
(2002)

[3] Fung, B.C.M., Wang, K., Chen, R., Yu, P.S.: Privacy-Preserving Data Publishing: A Survey
of Recent Developments. ACM Computer Surveys 42, 14:1–14:53 (2010)

[4] Goldreich, O.: Secure Multi-party Computation. Working Draft (2000)
[5] Han, J., Pei, J., Yin, Y.: Mining Frequent Patterns without Candidate Generation. SIGMOD

Rec. 29, 1–12 (2000)
[6] Kantarcioglu, M., Clifton, C.: Privacy-Preserving Distributed Mining of Association Rules

on Horizontally Partitioned Data. IEEE Transactions on Knowledge and Data Engineering
16(9), 1026–1037 (2004)

[7] Kuno, S., Doi, K., Yamamoto, A.: Frequent Closed Itemset Mining with Privacy Preserving
for Distributed Databases. In: Proceedings of ICDM Workshops on Privacy Aspects of Data
Mining. pp. 483–490 (2010)

[8] Lucchese, C., Orlando, S., Perego, R.: Distributed Mining of Frequent Closed Itemsets:
Some Preliminary Results. Proceedings of HPDM (2005)

[9] Minato, S.: Binary Decision Diagrams and Applications for VLSI CAD. Springer (1996)
[10] Minato, S.: Zero-suppressed BDDs and Their Applications. STTT 3(2), 156–170 (2001)
[11] Minato, S., Uno, T., Arimura, H.: LCM over ZBDDs: Fast Generation of Very Large-

Scale Frequent Itemsets Using a Compact Graph-Based Representation. In: Proceedings
of PAKDD 2008(LNAI 5012). pp. 234–246 (2008)

